

A great way to think about the 2016 Master Transportation Plan is as a blueprint to guide the city's continued transportation growth and development. We are pleased with how the input from interested Kyle residents is reflected in the work of our consultants and city staff in the updated plan. This master plan, combined with our new water and wastewater master plans, will provide the tools with which to better plan the future of our city.

Contents

1. Purpose and Need 7
Introduction 8
Study Area Limits and Participants 9
2. Methodology 13
3. Review of Previous Plans 17
City of Kyle 2005 Transportation Master Plan 19
City of Kyle 2010 Comprehensive Plan 23
Hays County 2013 Transportation Plan 24
CAMPO 2040 Regional Transportation Plan 27
City of Buda 2013 Transportation Master Plan Update. 31
San Marcos 2015 Transportation Master Plan 33
4. Public Participation 35
Public Meetings 37
Outcomes 40
5. Existing Conditions 43
Demographics 44
Land Use. 49
Zoning. 50
Constraints 52
Road Network. 56
6. Future Conditions 63
Population Projections 64
Employment Projections 68
Road Network 72
7. Thoroughfare Planning and Corridor Analysis 83
Functional Classification. 84
Typical Section. 86
Proposed Network 89
Corridor-Specific Descriptions. 92
8. Project Action Plan 101
9. Financing and Implementation 109
Sustainable City Funding Sources 110
Project Implementation Recommendations 112
10. Policy Recommendations 115
Complete Streets Policy 116
Subdivision Ordinance. 117
Grants Committee 117

Contents

List of Figures

Figure 1-1: Study Area ... 10
Figure 3-1: Kyle 2005 TMP... 19
Figure 3-2: Hays County 2013 Projects.. 24
Figure 3-3: CAMPO 2040 Projects .. 28
Figure 3-4: Buda 2013 TMP .. 32
Figure 3-5: San Marcos 2015 TMP... 33
Figure 5-1: Base Year 2010 Households... 47
Figure 5-2: Base Year 2010 Employment....................................... 48
Figure 5-3: Existing Zoning ... 51
Figure 5-4: Existing Natural Constraints.. 53
Figure 5-5: Sidewalk Inventory (October 2015)............................. 57
Figure 5-6: Base Year 2010 Traffic Volumes 60
Figure 5-7: Base Year 2010 Traffic Congestion.............................. 61
Figure 6-1: Future 2040 Households .. 66
Figure 6-2: 2010-2040 Household Growth 67
Figure 6-3: Future 2040 Employment 69
Figure 6-4: 2010-2040 Employment Growth 70
Figure 6-5: Future 2040 Traffic Volumes 73
Figure 6-6: Future 2040 Level-of-Service 74
Figure 6-7: Road Bond Projects 75
Figure 6-8: IH-35 Project Limits in City of Kyle 78
Figure 6-9: Proposed Lone Star Rail. 79
Figure 6-10: FM 150 Corridor C 80
Figure 6-11: FM 2001 Realignment 81
Figure 7-1: Future 2045 Road Classification 89
Figure 7-2: Future 2045 Right-of-Way Required 90
Figure 7-3: Future 2045 Proposed Projects 92
Figure 8-1: 2040 Level-of-Service for Proposed Network 104
Figure 8-2: 2016-2045 Project Prioritization 105
Figure 8-3: City of Kyle Council Districts 107

Contents

List of Tables

Table 1: Kyle 2005 TMP Project Status 20
Table 2: Hays County 2013 Project Status 25
Table 3: CAMPO 2040 Project Status 29
Table 5: Demographic Comparison (2010 Census) 45
Table 6: Population Comparison 46
Table 7: New Residential 59
Table 8: New Residential Development (July 2015). 65
Table 9: Demographic Comparison (2010 CAMPO) 71
Table 10: Demographic Comparison (2040 CAMPO) 71
Table 11: Bond Project Details. 75
Table 12 - Typical Section Summary 87
Table 13-Typical Section Cost Estimate. 88
Table 14 - Cost Estimate Total by Owner 91
Table 15 - Project Evaluation Matrix 102
Table 16 - Project Criteria Descriptions 103
Table 17 - Ranked Projects (Top 20). 106
Table 18 - Project Implementation 112

Appendices

A: Community Engagement and Communications Plan
B: Stakeholder Comments
C: Travel Demand Modeling Memorandum
D: Complete Streets Typical Sections
E: Transportation Plan Map
F: Major Roadway Planning Guide
G: Cost Estimation Memorandum
H: Funding Sources, Implementatiom, and Potential Policy Changes
I: Meeting Minutes

01
 Purpose and Need

Purpose and Need

Introduction

The City of Kyle was established in 1880 as a stop along the International and Great Northern Railroad. The station was constructed that year between Austin and San Antonio and Kyle has since grown into the second-largest city in Hays County, after San Marcos located eight miles to the south. Hays County is listed to be the 9th fastest growing county in the United States based on 2010 through 2014 Census estimates for counties with a population of 10,000 or more. In 2013 the City of Kyle was estimated to have over 31,000 residents, equating to a yearly growth rate of 4% since 2010. According to CAMPO's projections, population is expected to continue to grow at the same rate of 4% for the Kyle Extra-Territorial Jurisdiction (ETJ) and 3\% for the City of Kyle through year 2045. By then approximately 243,487 residents will be located in the study area, including 170,121 ETJ residents. The existing roadway network will need to be modified and expanded to serve this future growth.

This Transportation Master Plan (TMP) examines the current transportation system and the impacts of Kyle's growth on that system. It will determine the necessary improvements to the network, and a corresponding implementation plan through study year 2045. This plan also recommends an implementation framework of immediate, mid-term and long-term mobility needs for the City and surrounding area, and identifies possible projects and corridors for expansion to a more complete thoroughfare system. The TMP also gives a survey of feasible potential funding sources for projects under Kyle's jurisdiction.

243,487

City of Kyle Expected Population in 2045, including 170,121 ETJ residents*

[^0]
Purpose and Need

Study Area Limits and Participants

The study area is the City Limits and Extra-Territorial Jurisdiction (ETJ) of the City of Kyle, including the rapidly developing areas immediately in and surrounding Kyle.

Extra-Territorial Jurisdiction

Texas law allows municipalities certain powers outside of their city limits to regulate development in the area immediately outside their city limits. Depending on the city's population, this area may extend anywhere from one to five miles; it is known as the ExtraTerritorial Jurisdiction (ETJ). The rationale is that development in areas the city may annex is thus made more compatible with that already in the city. Furthermore, no other city may annex areas in the ETJ without permission, nor can those areas incorporate separately.

Kyle's ETJ extent is determined by the total inhabitants living in the city and the regulation is found in the Local Government Code- Chapter 42. Kyle's 31,000 residents align the city with the 25,000-49,999 range, allowing Kyle's ETJ to extend two miles past the City's boundary. The north boundary is mostly defined by the boundary with the City of Buda, roughly along Satterwhite Road, and the south limit is at San Marcos' boundary along FM 159 / Yarrington Road and the east and west limits are at Kyle's ETJ.

Purpose and Need

Purpose and Need

Figure 1-1 illustrates the entire City of Kyle jurisdiction; the city limits are shown in orange and the ETJ is shown in yellow. Other cities and their ETJs are shown in shades of pink and beige, and Hays County is shown in blue. Note that Kyle is more closed in than many people realize, with potential expansion restricted to the current ETJ, and a small area to the far southwest.

Study area participants providing input into developing this transportation study include Hays County, Texas Department of Transportation (TxDOT), the Cities of Buda, Mountain City, Uhland, Niederwald, and San Marcos, Hays CISD, community organizations, institutional stakeholders, and major employers. The City of Kyle hired Lockwood, Andrews \& Newnam, Inc. (LAN) to prepare the City of Kyle 2015 Transportation Master Plan and worked closely with the general public to capture local needs. LAN included GAP Strategies for public and stakeholder involvement, Prime Strategies, Inc., for financial and project prioritization recommendations, and Kimley-Horn Associates for travel demand modeling.

Lockwood, Andrews \& Newnam, Inc.

02
 Methodology

Methodology

Tasks and criteria were strategically created and utilized to prioritize immediate, mid-term and long-term mobility needs for the City of Kyle. Previous studies affecting the study area were reviewed to capture all previously proposed projects; the status of each is documented later in the plan. Public involvement was sought after by Kyle through different means of communication: project website, traditional and social media, community survey, and public meetings. City-stakeholders, including surrounding cities and site developers, were also encouraged to share their suggestions for the future network. Existing year 2015 and future area conditions during year 2040 were analyzed to determine the locations where roadway facilities are needed to support the growing demand by year 2045.

All recommendations compiled were cross-checked with the eight goals listed on the next page and established by LAN for the City of Kyle 2005 Transportation Master Plan. The goals are being carried forward in this plan as they are still relevant, overarching principles that coincide with Kyle's objectives for all future transportation solutions.

Methodology

Goal 1 -	Goal $2 \quad \downarrow$
Mobility The transportation system should offer convenient travel opportunities that will allow people to travel to a variety of places according to the needs of their own lifestyle.	Transportation Performance The transportation system should provide efficient quantity and quality of service with needed capacity, reasonable speed, convenience, and safety for all users.
Goal 5	Goal 6 \%
Environmental and Natural Resource Protection The transportation system should recognize the environmental resources of the region and minimize negative encroachments and disruptions on such areas.	Interagency Coordination In conjunction with the transportation plan, a spirit of commitment to interagency coordination and cooperation should be established in the region.

Goal 3	Goal 4:
Non-Motorized Travel The transportation system should enhance the quality of life of the Kyle community by providing a system of interconnected and safe bicycle paths, routes, trails, and pedestrian facilities.	Economic Development The transportation system should support and enhance economic development within the region.

Goal 7	Goal 8
Financial Feasibility	Commitment to The transportation plan must be financially feasible.
	Implementation The transportation plan should be supported by a commitment to implement the recommended improvements according to an identified schedule.

Lockwood, Andrews \& Newnam, Inc.

03 | Review of |
| :--- |
| Previous Plans |

Review of Previous Plans

This section summarizes previously proposed projects within and immediately adjacent to Kyle, TX. The most recent local and regional reports reviewed are listed below:

- City of Kyle 2005 Transportation Master Plan
- City of Kyle 2010 Comprehensive Plan
- Hays County 2013 Transportation Plan
- CAMPO 2040 Regional Transportation Plan
- City of Buda 2013 Transportation Master Plan Update
- San Marcos Transportation Master Plan*
* In progress as of March 2016

Review of Previous Plans

City of Kyle 2005 Transportation Master Plan

The City of Kyle experienced unprecedented growth for several years, and until 2005 had no specific transportation planning document. LAN created the City's first such plan, the City of Kyle 2005 TMP, to determine necessary system improvements. The plan identified 86 priority projects within the City of Kyle, shown in
Figure 3-1, and the status of each is listed in Table 1. Of the 86,25 projects have been constructed and 61 have not been funded or finished construction. Immediate and short-term projects were geared toward improving the current network's mobility by installing traffic signals and widening roads, among other improvements. The longterm plan was to construct a thoroughfare loop around Kyle to connect and alleviate major roads like FM 150 which serves the central core of Kyle. However, it has not been constructed due to funding.

(Source: City of Kyle Transportation Master Plan, July 2005)
Figure 3-1: Kyle 2005 TMP

Review of Previous Plans

Table 1: Kyle 2005 TMP Project Status

No.	Project Description (Constructed)
1	II: Increase turning radii on IH-35 at CR 130
2	I2: IH-35 frontage road ramp improvement at CR 122 (Bebee)
3	I4: IH-35 frontage road ramp improvement at FM 150
4	Increase UPRR crossing sight distance (various)
5	B6: New bridge on IH-35 at FM 150
6	NLR1: New FM 1626 4 lane road from FM 2770 to IH-35
7	NLR2: New FM 1626-Bunton 4 lane road from IH-35 to Bunton/Goforth
8	NLR9: Construct IH-35 frontage road from US 81 to US 81
9	NLR16: New 4 lane road from Bebee to NLR20
10	R1: IH-35 expansion to 6 lanes from FM 2001 to LP 82
11	R6: Improve Center St from FM 150 St to IH-35
12	R13: Widen Kohlers Crossing to 4 lanes from FM 2770 to FM 1626
13	R14: Widen Kohlers Crossing to 4 lanes from FM 1626 to Dry Hole
14	R21: Widen Dacy to 4 lanes from Bunton to Bebee
15	R32: Kyle Crossing at IH-35
16	S1: Install traffic signal on IH-35 at Windy Hill
17	S10: Install traffic signal on FM 150 at IH-35
18	S12: Install traffic signal on FM 2770 at FM 150
19	S2: Install traffic signal on IH-35 at FM 1626
20	S5: Install traffic signal on IH-35 at Center
21	S7: Install traffic signal on Center at Burleson
22	TxDOT(R2): Talked about making IH-35 frontage roads one-way
23	TxDOT (R3): West frontage road from Dry Hole to FM 1626
24	Improve parking /pedestrian safety along Center St in downtown
25	TxDOT (B1-B3): replace three IH-35 bridges located at Dry Hole/Windy Hill, Bunton overpass, and Center

Review of Previous Plans

Table 1: Kyle 2005 TMP Project Status (Continued)

No.	Project Description (Not Constructed)
26	B4: New bridge on IH-35 at Opal
27	B5: New bridge on IH-35 at Yarrington
28	I3: Eliminate intersection skew on IH-35 at CR 131
29	I5: Goforth right turn lane at school
30	I6: Eliminate CR 158 intersection skew at CR 134
31	NLR4: New Cotton Gin 4 lane extension to FM 1626 from IH-35 to Cotton Gin
32	NLR13: New 4 lane road from Yarrington to FM 150
33	NLR17: New 4 lane road from LP 4 to Dry Hole
34	NLR19: New 4 lane road from IH-35 to NLR13
35	NLR25: New 4 lane road from FM 110 to CR 158
36	NLR6: New Burleson 4 lane road from Yarrington to Opal
37	R10: Widen Lehman to 4 lanes from Hill to Bunton
38	R11: Widen Windy Hill to 4 lanes from IH-35 to Dacy Ln
39	R15: Widen Burleson to 3 lanes from Center to IH-35
40	R16: Widen Old 81 to 3 lanes at west IH-35 frontage road
41	R17: Widen Goforth to 4 lanes from Bunton Ck Rd to Bunton Ln
42	R18: Widen Bunton to 4 lanes from Goforth to Dairy Rd
43	R19: Widen Bebee to 4 lanes at IH-35
44	R20: Widen High to 4 lanes (east extension of Bebee)
45	R22: Widen Old Stagecoach to 4 lanes from FM 150 to Center
46	R24a: Widen Opal to 4 lanes from Old Stagecoach to new loop
47	R25: Widen Opal to 4 lanes from IH-35 to CR 158
48	R26: Widen Roland to 4 lanes from Old Stagecoach to IH-35
49	R27: Widen Cypress to 4 lanes from Old Stagecoach to Blanco River
50	R28: Widen Dacy to 4 lanes from Windy Hill to Kelly Smith

Review of Previous Plans

Table 1: Kyle 2005 TMP Project Status (Continued)

No.	Project Description (Not Constructed)
51	R30: Widen Center to 4 lanes from Old Stagecoach to FM 150
52	R31: Widen Scott to 4 lanes from Center to Opal
53	R4: Widen FM 150 to 4 lanes from FM 3237 to FM 2770
54	R5: Widen FM 150 to 4 lanes from FM 2770 to Center St.
55	R7: Widen FM 150 to 4 lanes from IH-35 to SH 21
56	R9: Widen Goforth to 3-4 lanes from IH-35 to Bunton
57	S11: Install traffic signal on FM 150 at Lehman
58	S13: Install traffic signal on FM 1626 at Kohlers Cr
59	S14: Install traffic signal on Kohlerss Cr at Dry Hole
60	S3: Install traffic signal on Goforth at Bunton
61	S4: Install traffic signal on Goforth at Lehman
62	S6: Install traffic signal on Center at Old 81
63	S8: Install traffic signal on Center at FM 150
64	S9: Install traffic signal on Center at Old Stagecoach
65	NLR3: New Lehman 4-lane road from Lehman to Cotton Gin
66	NLR12: New Yarrington 4 lane road from Old Stagecoach to IH-35
67	NLR14: New 4-lane road from FM 150 to Bunton (Loop)
68	NLR15: New 4-lane road from Bunton to High (Loop)
69	NLR18: New 4-lane road from CR 158 to Hill (Loop)
70	NLR20: New 4-lane road from Bebee to Windy Hill (Loop)
71	NLR22: New 4-lane road from Dry Hole to FM 1626 (Loop)
72	NLR23: New 4-lane road from FM 1626 to FM 2770 (Loop)
73	NLR26: New 4-lane road from NLR20 to Windy Hill (Loop)
74	NLR27: New 4 lane road from Stagecoach to IH-35 (Loop)
75	NLR8: New Burleson 4-lane road from FM 1626 to Kohlers Crossing

Review of Previous Plans

Table 1: Kyle 2005 TMP Project Status (Continued)

No.	Project Description (Not Constructed)
76	NLR11: New 3-lane road from Burleson to FM 1626
77	NLR5: New Burleson 3-lane road from Center to Allen
78	NLR7: New Burleson 4-lane road from Opal to Allen
79	NLR10: New Burleson 4-lane road from Spring Branch to FM 1626
80	NLR21: New Opal 4-lane road from Old Stagecoach to Blanco
81	NLR24: New 4-lane road at Old Stagecoach
82	R24b: Widen Opal to 2 lanes from new loop to IH-35
83	R29: Widen E Post to 2 lanes from NLR 19 to Opal
84	R23: Widen Old Stagecoach to 4 lanes from Center to FM 110
85	R12: Widen Dry Hole to 4 lanes from Kohlers Crossing to IH-35
86	R8: Widen FM 2770 to 4 lanes from FM 1626 to FM 150

City of Kyle 2010 Comprehensive Plan

The City of Kyle 2010 Comprehensive Plan was created to further support Kyle's vision of a strengthened network system. The main difference between this plan and City of Kyle 2005 TMP was that the report produced in 2010 recommends a system of two loops, an inner and outer, which have not been advanced.

Review of Previous Plans
 Hays County 2013
 Transportation Plan

Hays County updated their decade-old transportation plan in March 2013 to localize roadway system improvements within one of the fastest growing counties in Texas. The study proposed 34 projects within Kyle's city boundaries and all are listed in Table 2. Only three of the total proposed projects have been constructed within the past two years. This plan carried over several projects mentioned in the City of Kyle 2005 TMP. For example, the thoroughfare loop concept continues to be supported by Hays County and is shown in Figure 3-2. Updates on existing roadways are proposed along FM 150, FM 2770, FM 1626, and other main county roads.

Figure 3-2: Hays County 2013 Projects

(Source: Hays County Transportation Plan, March 2013)

Review of Previous Plans

Table 2: Hays County 2013 Project Status

No.	Project Description (Constructed)
1	Update Kohlers Xing to MAD4 from FM 2770 to IH-35. ROW recommended is 100.
2	Update Kyle Crossing to MAD2/4 from IH-35 to Kohlers Xing. ROW recommended is 80.
3	Update Kyle Crossing to MAU2 from Kohlers Crossing to IH-35 @ Old Bridge Trail. ROW recommended is 80.

No.	Project Description (Not Constructed)
4	Update Goforth Rd to MAU2 from FM 2001 to Hillside Terrace. ROW recommended is 80.
5	New Kyle Loop (W)- MAD4 from NF 17 to Old Stagecoach Rd. ROW recommended is 150.
6	New NF17 (Kyle)- MAD4 from FM 150 to Kyle Loop. ROW recommended is 150.
7	Update Bebee/High to MAD2 from IH-35 to SH 21. ROW recommended is 100.
8	Update Bunton Creek to MAD2 from IH-35 to Kyle Pkwy. ROW recommended is 80. Reconstruction to connect to the Kyle Pkwy Extension
9	Update CR 158 to MAU2 from IH-35 to Turnersville Rd extension. ROW recommended is 80.
10	Update FM 150(E) to MAD2 from IH-35 to SH 21. ROW recommended is 100. Possible extension into Caldwell County east of SH 21.
11	Update FM 150(W) to MAD4 from FM 3237 to Kyle Loop (SW). ROW recommended is 150. Kyle Loop connection to IH-35 at Yarrington Rd.
12	Update FM 150(W) to MAD4 from Kyle Loop (SW) to FM 2770. ROW recommended is 150.
13	Update FM 150(W)/Center to MAD2 from Rebel to IH-35. ROW recommended is existing.
14	Update FM 150(W)/Rebel to MAD2 from FM 2770 to W. Center St @ Rebel Dr. ROW recommended is 100.
15	Update FM 1626 to EXPY6 from FM 2770 to IH-35. ROW recommended is 200.
16	Update FM 1626 to EXPY6 from FM 967 to FM 2770. ROW recommended is 200.
17	Update FM 2770 to MAD4 from FM 1626 to FM 150. ROW recommended is 150.
18	Update FM 2770 to MAD4 from FM 967 to FM 1626. ROW recommended is 150.
19	Update Kyle Loop (W) to MAD4 from FM 1626 @ RS Light to NF 17. ROW recommended is 100.
20	Update Kyle Loop (W) to MAD4 from Old Stagecoach Rd. to IH-35 @ FM 110/Yarrington Rd. ROW recommended is 100.
21	Update Kyle Pkwy/Bunton/Gristmill to MAD4 from IH-35 @ FM 1626 to SH 21 @ Gristmill Rd. ROW recommended is 100.
22	Update Lehman to MAU2 from Goforth to FM 150. ROW recommended is 80.
23	Update Lime Kiln Rd to MAU2 from Cypress to Hilliard. ROW recommended is 80. Connect over Blanco River to Cypress Rd.

Review of Previous Plans

Table 2: Hays County 2013 Project Status (Continued)

No.	Project Description (Not Constructed)
24	Update NF1 (Turnersville Rd) to MAD6 from SH 45 SE to FM 110. ROW recommended is 150.
25	Update NF15 (Lime Kiln Rd, Cypress) to MAU2 at Blanco River crossing. ROW recommended is 80.
26	Update Post to MAU4 from IH-35 to Aquarena Springs. ROW recommended is 100.
27	Update Satterwhite to MAU2 from FM 2001 to Turnersville Rd extension. ROW recommended is 100.
28	Update SH 21 to MAD6 from Caldwell County line to Yarrington. ROW recommended is 200.
29	Update Shadow Creek to MAD2 from Hillside Terrace to Bebee. ROW recommended is 100.
30	Update Windy Hill to MAD2 from IH-35 to Turnersville Rd extension. ROW recommended is 100.
31	Update Yarrington to MAD4 from FM 110 to SH 21. ROW recommended is 100. Intersects Turnersville Rd.
32	New Marketplace- MAD4 from FM 967 to IH-35 @ Burleson. ROW recommended is 100.
33	Update Old Stagecoach to MAU2 from Post to FM 150. ROW recommended is 80.
34	Update Hillside Terrace to MAU2 from IH-35 to FM 2001. ROW recommended is 80.

Review of Previous Plans
 CAMPO 2040 Regional Transportation Plan

In May 2015, Capital Area Metropolitan Planning Organization (CAMPO) released the adopted 2040 Regional Transportation Plan (RTP) and this included proposed corridors located in the City of Kyle. CAMPO serves as the Metropolitan Planning Organization (MPO) for Hays and five other counties in the region. Every five years CAMPO updates the RTP per federal law and it serves as the region's blueprint to design and build a constructive roadway network. This year's RTP included 43 projects in Kyle, and are listed in Table 3. Thirty Seven of the projects are expected to be funded between 2015 through 2040 while the rest do not have identifiable funds or viable sponsors. All except two proposed projects, shown in Figure 3-3, have yet to be constructed. Interstate highway (IH) 35 and FM 150 are the corridors receiving federal funds within Kyle's limits

Review of Previous Plans

(Source: CAMPO 2040 Regional Transportation Plan, May 2015)
Figure 3-3: CAMPO 2040 Projects

Review of Previous Plans

Table 3: CAMPO 2040 Project Status

No.	Project Description (Funded between 2015-2040)
1	Capitol Metro plans to have an Express Bus on HOV/HOT ramps on IH-35
2	TxDOT has IH-35 improvements from SH 45 to Posey Rd
3	TxDOT has IH-35 operational improvements from RM 150 to north of Blanco River; reversing ramps and adding shared use paths
4	Hays plans to update SH 21 to an MAD6 from Caldwell County to CR 159
5	New MAD4 Kyle Loop (West) from NF 17 (Kyle) to Old Stagecoach Rd.
6	Improve Yarrington Rd to MAD4 from FM 110 to SH 21
7	New MAD4 Kyle loop (West) from Old Stagecoach Rd to IH-35 @ Yarrington.
8	New MAD5 Kyle loop (West) from FM 1626 to NF 17
9	Improve Dacy Ln/Goforth Rd to MAU4 from Hillside Terrace to IH-35
10	*New MAD4 Kohlers Xing from FM 2770 to IH-35
11	Improve Bebee/High to MAD2 from IH-35 to SH 21
12	Improve Windy Hill to MAD2 from IH-35 to Turnersville extension
13	Improve Kyle Pkwy/Bunton/Gristmill to MAD4 from IH-35 @ FM 1626 to SH 21; connect with FM 2720 @ SH 21
14	Improve Center St from FM 150 to IH-35 to relieve downtown
15	Widen FM 2770 to 4 lanes from FM 1626 to FM 150
16	Widen Center St to 4 lanes from Old Stagecoach to FM 150
17	Improve Lehman to MAU2 from Goforth to FM 150, left turn lanes and sidewalk on 1 side
18	New MAD4 Marketplace Ave from FM 967 to IH-35 @ Burleson
19	Improve Old Stagecoach to MAU2 from Post to FM 150
20	New MAD2 Shadow Creek Blvd from Hillside Terrace to Bebee
21	MAD2 FM 150 (W) from FM 2770 to W Center @ Rebel
22	MAD2 FM 150 (W) from IH-35 to Rebel Dr
23	MAD4 FM 150 (W) from FM 3237 to Kyle Loop (SW)
24	MAD4 FM 150 (W) from Kyle Loop (SW) to FM 2770

Review of Previous Plans

Table 3: CAMPO 2040 Project Status (Continued)
No. Project Description (Funded between 2015-2040)
25 Construct 3-lane at Bunton/Goforth from IH-35 to Lehman; continuous left-turn lane up to 900' W of Bardin Circle, sidewalk on 1 side
Construct 3-lane at Burleson from Miller to IH-35 frontage (new connection); divided road with TWLTL, sidewalk on 1 side at a minimum

Construct 4-Iane at Goforth from Brent to Bunton Creek; sidewalk on 1 side
Construct 3-lane at Goforth from IH-35 frontage to Brent; continuous left-turn lane and sidewalk on 1 side at a minimum
Construct 3-lane at Kyle Marketplace frontage from N Burleson (E of UPRR) to City Lights
Arterial street improvement program
Install traffic signal on Center at FM 150
Install traffic signal on Center at Old Stagecoach
Install traffic signal on Kohlers Crossing at Dry Hole
Improve parking /pedestrian safety on Center at Downtown
Eliminate intersection skew on CR 158 at CR 134; not all turns currently possible
Install traffic signal on Goforth at Bunton
Install traffic signal on Goforth at Lehman; improve sight distance in east quadrant
*Constructed Project

No. Project Description (Not Funded)
38 New bridge on IH-35 at Opal Ln; preferred south loop location
Improve CR 158 to MAU2 from IH-35 to Turnersville Rd Extension

Improve Goforth to MAU2 from FM 2001 to Hillside Terrace
Improve Hillside Terrace to MAU2 from IH-35 to FM 2001
*Improve Kyle Crossing to MAU2 from IH-35 @ Old Bridge Trail to Kohlers Crossing
Improve Lime Kiln to MAU2 from Cypress to Hilliard; connect over Blanco river to Cypress Rd
*Constructed Project

Review of Previous Plans

City of Buda 2013 Transportation Master Plan Update

The City of Buda is located directly north of Kyle. LAN created Buda's initial transportation plan in 2006 and the TMP Update in 2013. The 2006 plan recognized Kyle's 2005 work, and the 2013 Update makes recommendations for corridors and other concepts that will influence Kyle's current planning effort. As shown in Figure 3-4, FM 1626, FM 2770, FM 967, and other proposed roadways extend south into the City of Kyle. The report recommends acknowledging Hillside Terrace Drive as an east-west corridor since it forms the Buda-Kyle ETJ boundary. Another recommendation made was to construct connections between Buda and Kyle subdivisions, specifically Shadow Creek Subdivision to the east of IH-35. Connections specifically identified are the following:

- Shadow Creek Boulevard Extension of Green Meadows Lane,
- A link between Spanish Trails Boulevard and Dacy Lane
- A link between Dacy Lane and FM 2001 about $1 / 2$ miles south of Hillside Terrace Drive.

Review of Previous Plans

Review of Previous Plans

San Marcos 2015 Transportation

Master Plan

The City of San Marcos is in the process of updating their 2004 TMP and like the 2004 plan, San Marcos' draft network is proposing an outer loop (FM 110) that connects into Kyle's proposed loop. Figure 3-5 became available October 2015 and is reflected in Kyle's 2045 proposed network.

(Source: San Marcos Transportation Master Plan, October 2015)
Figure 3-5: San Marcos 2015 TMP

04 Public Participation

Public Participation

The general public and all citizens were given the opportunity to participate in this project's planning process through different means of communication; project website, traditional and social media, community survey, and outreach and public meetings.

Public Participation

Public Meetings

Public meetings bring a diverse group of stakeholders together and provide participants with a chance to voice their concerns, issues, and ideas. Three "traditional" organized public meetings are planned: the initial community kick-off meeting, mid-project community meeting, and final public meeting.

The initial public meeting and stakeholder workshop was held Monday, March 9, 2015, at 7:00 pm at the Kyle Public Library. The meeting was advertised on the website, the marquee at City Park, and with various announcements and flyers distributed to organizations throughout the City. Attendance was high, with an estimated 80 members of the public, in addition to City staff and Council, County Commissioners, and other officials.

The meeting was conducted as a presentation and workshop. The first section consisted of a presentation about the transportation planning process in general, and the goals and objectives for this study in particular. This presentation was followed by a map exercise in which participants were invited to four tables laid out with identical copies of a city base map, and asked to indicate where and what transportation issues they felt needed to be addressed in the plan. Participants were provided with markers, Post-It notes, and red and green stickers to indicate their ideas. After approximately thirty minutes, the maps were collected. Table moderators gave a verbal summation of the comments and mark-ups on each map. Comment forms were also made available, for attendees to write narrative comments and return to the project team.

Kyle Public Library 3/19/2015

Wallace Middle School 3/25/2015

Susie Fuentes Elementary 2/11/2016

Public Participation

In addition to the public input workshop, the five engineering companies designing the projects in the road-bond package staffed informational displays about the design and timeline of those five projects; Goforth Road, Bunton Creek Road, Marketplace Avenue, North Burleson Street, and Lehman Road.

A second public meeting was held on Tuesday, August 25, 2015, at 6:00 pm at the Wallace Middle School Cafeteria. This public meeting was similarly advertised and conducted like the first public meeting; however, instead of displaying road-bond project information LAN displayed the approved typical sections shown in Appendix D. A survey was conducted during the meeting and online to capture additional feedback from the community.

The third and final public meeting was held on Thursday, February 11, 2016, at 6:30 pm at Susie Fuentes Elementary. This public meeting was advertised similarly to the previous public meetings; however additional information was made public, and the meeting was conducted in an open-house format without a formal PowerPoint presentation. Display boards included the typical sections shown during the second public meeting, an aerial map with the proposed network classifications, and a project prioritization map. A summary of outreach activities and a detailed list of project prioritizations were available for the community's reference. The meeting was attended by an estimated 25 members of the public, mostly from Kyle with a small portion from San Marcus and Austin. Comments were collected to capture final concerns from both residents and stakeholders.

Public Participation

A summary of major themes and commonly-expressed ideas from all public meetings is below.

- Need an alternative route to access $\mathrm{IH}-35$ and remove traffic going through downtown
- Build an underpass or overpass to allow access to both sides of IH-35 near Roland Ln and E. Post Rd
- A north-south arterial is needed on the east side of Kyle
- Need transitions between east-west roads to have a continuous route to SH 21
- Additional crossings of IH-35 would be useful-vicinity of Kohler's Crossing and Opal Lane or Roland Lane were repeatedly mentioned
- Multiple locations where short connections between roadways can help "fill-out" the grid
- More sidewalks are needed, especially on major roads like FM 150
- Need a road network laid out in advance for large parcels yet to develop (Anthem and GLO tract were cited)
- Increase safety along school zones corridors like FM 2770 and Kohlers Crossing
- Residents south of Center wish to preserve the rural lifestyle and avoid major thoroughfare changes
- Recommend bike lanes along Old Stagecoach and Bebee/High because they are highly used by cyclist, and shared lane markings (SLM) for corridors without bike lanes
- A traffic signal is highly needed along FM 1626 at Kohlers Crossing

The scanned workshop maps with major comments and responses, as well as scanned comment forms and survey results, are shown in Appendix A.

Public Participation

Outcomes

Projects recommended by the public were taken into consideration and incorporated into the proposed network. Listed below are the nine projects introduced by the public and currently supported by the City of Kyle; they are further discussed later in the plan.

Project	Improvement	From	To
Bebee	New 2-lane divided road with TWLTL	IH-35	Bebee
Creekside	New 2-lane road over Plum Creek	Creekside	Bunton
Goforth	New 2-lane road over Porter Creek	Bebee	Bunton
Kohlers Crossing	New bridge; grade separation over UPRR	at UPRR	-
Kohlers Crossing	New bridge; grade separation over IH-35	at IH-35	-
Loop 4	New 2-lane divided road with TWLTL	FM 967	Kyle Crossing
Opal	New 4-lane road	IH-35	CR 158
RM 150	Improve sight distance	at CR 202	-
SH 21	Install traffic signal	Grist Mill	-

Public Participation

05
 Existing Conditions

Existing Conditions

Demographics

2010 Census

According to the 2010 Census, the City of Kyle's demographics in 2010 were roughly comparable to Hays County and the state of Texas as a whole. The proportion of children under 18 was notably higher in the Kyle than countywide, however, at 44.0 percent and 30.3 percent, respectively. Unsurprisingly, home ownership rates were higher in Kyle than for the rest of the state and county. The average household size is nearly half a resident higher in Kyle than throughout Texas, which can be attributed to a higher proportion of children and fewer senior citizens living in the city. Residents of Kyle have a lower educational attainment but higher general income than residents in Hays County as a whole.

Table 5 compares demographics between the City of Kyle, Hays County, and statewide throughout Texas. Demographic categories include a population breakdown by age, housing, educational attainment, employment and income, and work commute by mode choice Statistics were found using data from the U.S. Census Bureau's most recent survey in 2010.

Existing Conditions

Table 5: Demographic Comparison (2010 Census)

Statistic	City of Kyle	Hays County	State of Texas
in Population			
Total Population	28,016	157,127	25,146,104
Children under 5	10.3\%	6.3\%	7.7\%
Children 5-17	33.7\%	24.0\%	27.3\%
Adults 18-64	51.8\%	61.1\%	54.7\%
Seniors 65+	4.2\%	9.6\%	10.3\%
Housing			
Housing Units	9,226	56,459	9,977,436
Owner-Occupied	80.3\%	66.8\%	63.3\%
Average Household Size	3.28	2.77	2.82
Q Education			
Finished High School	89.0\%	89.3\%	81.2\%
Finished College	27.5\%	36.7\%	26.7\%
Employment			
Unemployment Rate	2.6\%	3.4\%	4.6\%
Median HH Income	\$75,262	\$58,651	\$51,900
Per Capita Income	\$24,547	\$26,873	\$26,019
Families in Poverty	7.4\%	17.0\%	17.6\%
Median Home Value	\$147,900	\$175,600	\$128,900
Work Commute			
Travel Time to Work (min)	32.4	29.3	25.0

Existing Conditions

Table 6 compares population estimates provided by the U.S. Census Bureau. Kyle and Hays County faced a 4% growth rate from year 2010 to year 2013. The City of Kyle currently does not have a population estimate for year 2014 but it is expected to be over 33,000 residents to match Hays County's 5\% growth rate from year 2013 to year 2014. Texas has had a steady population growth of 2% since 2010, lower than Hays County.

Table 6: Population Comparison

Statistic	City of Kyle	Hays County	State of Texas
2010 Population	28,016	157,127	$25,146,104$
2013 Population	31,760	176,483	$26,505,637$
2014 Population	-	185,025	$26,956,958$

CAMPO

As coordinator of transportation projects in the region, Capital Area Metropolitan Planning Organization (CAMPO) is federally mandated to provide population projections and employment projections to aid its constituent governments in planning for future growth. Current CAMPO projections extend out to year 2040, using base year 2010 data. All CAMPO models generated for this plan are located in Appendix C.

Existing Conditions

Figure 5-1 shows the household density during base year 2010. Household density was the highest north of downtown and the lowest south of downtown.

Figure 5-1: Base Year 2010 Households
City of Kyle

Existing Conditions

Figure 5-2 shows the employment density during base year 2010. Employment density was the highest north-east of the city and the lowest in the south-west area.

During year 2010, the City of Kyle held the highest household and employment densities in the area enclosed by FM 150, IH-35, Bunton Road, and Lehman Road.

Figure 5-2: Base Year 2010 Employment

Existing Conditions

Land Use

The City of Kyle and its ETJ have experienced an increase in suburban development over the past decade. IH-35 and its frontage roads bisect the City in the north-south direction. Much of the area's recent commercial development has taken place along the $\mathrm{IH}-35$ frontage roads, including a new Walmart, Home Depot, and H-E-B Plus north of downtown Kyle. Most of the schools in Kyle are new and located on large, isolated parcels due to recent growth in the area.

Many single-family subdivisions are interspersed with agricultural land surrounding the downtown area. Several blocks of small commercial establishments, City Hall, and surrounding historic homes comprise Kyle's historic downtown. The region may be a potential historic district.

City of Kyle

Existing Conditions

Zoning

The City of Kyle's Planning and Zoning Commission controls how areas of land are divided for various land uses. Additional functions of the Planning and Zoning Commission include:

- Approve or disapprove plats of proposed subdivisions
- Review and make recommendations on the zoning of land
- Amend the comprehensive plan for the physical development of the city and recommend the comprehensive plan to the council for approval

Zoning is primarily used to separate land uses that are typically seen as incompatible and to prevent new development from interfering with existing uses. Examples of zoning categories include residential, commercial, industrial, special use, and subdivisions. These functional categories are commonly divided into subcategories (e.g., the commercial category may have small retail, large retail, office use, and general business subcategories). Figure $\mathbf{5 - 3}$ shows the existing use classification for each parcel within the City of Kyle.

Note the majority of commercial zoning is along the $\mathrm{IH}-35$ corridor. The northwestern part of the city, particularly around FM 1626, is zoned for multifamily development, of which little is constructed as of 2015. Agricultural zoning is scattered about the southeast part of the city, interspersed with existing single-family residential subdivisions. These agricultural zones may see pressure to be developed with more intensive uses as other areas of the city reach buildout. Finally, note that the zoning only covers the city limits, not the ETJ; particularly to the west of the city, large areas of ETJ will have to have a transportation network planned based on the assumed development pattern there, in the absence of specific zoning.

Existing Conditions

Zoning Categories
 R-1: Single Family

R-1-1: Single Family Residential 1 R-1-2: Single Family Residential 2R-1-A: Single Family AttachedR-1-T: Residential TownhomeR-2: Residential Two FamilyR-3-1: Multi-Family Residential 1R-3-2: Multi-Family Residential 2R-3-3: Apartments Residential 3M-2: Manufactured Home SubdivisionM-3: Manufactured Home ParkA: AgriculturePUD: Planned Unit DevelopmentCBD-1: Central Business District 1CBD-2: Central Business District 2R/S: Retail/ServiceCC: Community CommercialC-1: CommercialC-2: Commercial - General Business
C/M: Construction/ManufacturingE: EntertainmentAl: Heavy IndustrialHS: Hospital ServicesT/U: Transportation/UtilitiesW: Warehouse

Plum Creek Zoning

$\because:$ PC R-1: Residential 1
\therefore.. PC R-2: Residential 2PC R-3: Residential 3MXD: Mixed UseEMP: EmploymentLI: Light IndustrialOS: Open Space
\square Development Agreement
Lot/Parcel Lines

(Source: City of Kyle, May 2014)

Figure 5-3: Existing Zoning

Existing Conditions

Constraints

Natural and Political

The Blanco River creates a natural barrier to the southwest. Future development of the large land parcel across the river that is still within Kyle's ETJ will be difficult due to the river and existing subdivisions to its west. Kyle's ETJ limits are fairly constrained for a small city, although growth opportunities for it exist to the east and northeast.

The edge of the Texas Hill Country creates hilly land to the west of Kyle and restricts largescale development due to uneven topography and environmental concerns to the underlying Edwards Aquifer as shown in Figure 5-4. Several large environmental reserves belonging to the City of Austin lie to the northwest of Kyle in Mountain City. Conservation easements may apply to some areas to the west; in addition, if large parcels west of the Blanco River come into new ownership, a future plan update should consider transportation needs in that area. A large quarry divides Kyle and the City of Buda to the north and gently rolling agricultural land lies to the east and southeast of Kyle. Further to the east is a string of small cities, including Creedmoor, Uhland, and Niederwald.

Existing Conditions

Figure 5-4:
Existing Natural
Constraints

Existing Conditions

Infrastructure

Environmental regulations due to the presence of the Edwards Aquifer place constraints on infrastructure expansion into the aquifer's transition and recharge zones. Developers are subject to extra costs in order to meet permit conditions in these areas.

The City's wastewater treatment facility is located southeast of Kyle on Plum Creek. Effluent from future development in areas west of Kyle will need to cross IH-35 to receive treatment with this current configuration.

The railroad track located inside Kyle's city limits is currently owned and managed by Union Pacific (UP). The track, located west of IH-35, is considered as a major constraint for all modes of transportation. The railroad prevents construction to occur along its route and many obstacles are presented when a roadway is proposed to be built at-grade. For example, UP requires two existing at-grade crossings to be closed in order for one new at-grade crossing to be built.

Existing Conditions

City of Kyle

Existing Conditions

Road Network

Most city streets in the downtown area have a 60 ft right-of-way (ROW), while existing county roads have between 100 and 200 ft of ROW. The majority of streets owned and maintained by the City of Kyle are generally in good condition, as the City had a program in place from 2002 to 2010 that repaved city streets with curb and gutters. Due to lack of funds the program was discontinued, but is recommended to go back into effect as soon as funds become available. Pavement surfaces in most of Kyle's subdivisions are in excellent condition, as the majority of them are relatively new. State- and county-maintained roads, however, tend to be in markedly worse condition.

Sidewalk Inventory

As of October 2015 a majority of the roads in the study area lacked sidewalks or contained sidewalks along both directions, as shown in Figure 5-5. Subdivisions in Kyle are relatively new and make up most of the dual sidewalks, unlike state and county roads which mainly lack sidewalks for pedestrians to use. It is recommended Kyle budget a percentage of project funds toward constructing sidewalk facilities along major roadways, as implemented by Austin in its Complete Streets Policy adopted June 2014.

Existing Conditions

Figure 5-5:
Sidewalk
Inventory
(October 2015)

Existing Conditions

Traffic Congestion

CAMPO's Congestion Management Process (CMP) works with several stakeholders to collect and monitor regional traffic data. The CMP is a four-step process that reoccurs every two years, and is shown below.

Existing Conditions

CAMPO's traffic models helped determine the level-of-service (LOS) for roadway within the study area. The effectiveness of the roadway in maintaining an acceptable standard of traffic flow, given its design capacity, is evaluated in terms of its LOS. Level-of-service ratings use an alphabetic scale, with " A " as most free flowing and " F " as having severe congestion. Roadways with level-of-service " A " through " C " are most desirable. LOS " A " represents negligible amounts of traffic, such as might be found late at night. "B" and "C" are typical offpeak volumes (mid-morning or mid-afternoon). Peak, or rush hour, often finds roadways with LOS " D ," moderate congestion which is considered acceptable. Most roadways are designed to experience congestion no worse than "D." LOS "E," heavy congestion, and "F," severe congestion, are generally considered unacceptable, and are usually addressed by increasing the number of travel lanes, retiming signals, or other traffic control measures.

The travel demand modeling conducted by Kimley-Horn Associates used the following volume-to-capacity ratios to determine corridor LOS designation.

Table 7: New Residential

Level-of-Service	V/C
A,B,C	$<.65$
D	$>.65$ and $<.80$
E,F	$>.80$

Existing Conditions

CAMPO's model, shown
in Figure 5-6, displays
the recorded volumes throughout the Kyle network during year 2010.

Figure 5-6: Base Year 2010 Traffic Volumes

Existing Conditions

Figure 5-7 shows
Kyle's existing roadway network during year 2010 and the LOS per roadway segment. All roadways resulted in acceptable LOS; however, Center Street and $\mathrm{IH}-35$ resulted in the most congested corridors in 2010.

Figure 5-7: Base Year 2010 Traffic Congestion

City of Kyle

06 ruture condifions

Future Conditions

Population Projections

Population growth projections are anticipated wherever there is open land available for development throughout Kyle. Projections are not expected in the central core of the city because those neighborhoods are largely built-out. The City of Kyle will be undergoing through several residential developments in the next couple of years, totaling in 14,842 additional homes. These developments are listed in Table 8 and their current status ranges from a general concept to under construction.

A traffic study was conducted in 2014 for the proposed Sunset Hills residential development. The 180-unit subdivision is proposed to be constructed by 2016 along Bebee Road which is currently a 2-lane undivided roadway. The only subdivision access point, Sunset Hills Driveway, is proposed to have two egress lanes and one ingress lane. The traffic study determined Bebee Road by 2016 will require a left-turn deceleration lane for residents to safely turn into Sunset Hills Driveway. Several plans like City of Kyle 2005 TMP and Hays County 2013 Transportation Plan propose Bebee to be widened, so incorporating the traffic study's suggestion can easily be made if and when Bebee is redeveloped.

Future Conditions

Table 8: New Residential Development (July 2015)

Project Name	Status	Location	Units	Acres
Anthem	In Design	W RR 150	2,200	690.0
Brookside Phase 2	Approved	Arbor Knot Dr	220	36.24
Bunton Creek remaining phases	In Review	Twin Creeks Dr	440	90.08
Cool Springs	In Review	1838 E RR 150	372	125.2
Creekside at Bunton Creek	Concept	500 Bunton Ln	300	97.9
Creekside Village	In Review	N Burleson St	280	73.2
Crosswinds MUD	In Review	2000 Windy Hill Rd	1,750	443.5
Cypress Forest	Concept	N Old Stageoach Rd at Cypress Rd	337	130.4
GLO	Concept	Western Kyle ETJ north of Blanco River	1,400	2,154.6
Hidden Valley	Concept	400 Bunton Ln	1,100	222.9
La Salle MUD	Concept	Yarrington Rd	2,400	2,740.4
Lehman Tract	Concept	100 Bunton Ln	150	97.6
Oaks of Kyle Apts	Under Construction	200 Goforth Rd	204	10.1
Pecan Woods	Concept	E RR 150 at Heidenreich Ln	1,400	768.4
Plum Creek Phase 2	Concept	Bebee Rd east of Republic Dr	1,500	606.5
Sunset Hills	In Review	Bebee Rd at Republic Dr	177	53.2
The Strand Apartments	Under Construction	150 Amberwood S	160	7.6
Trails at Plum Creek Apts	Under Construction	4300 Cromwell	248	12.3
Vista at Plum Creek Apts Phase 2	Under Construction	5020 Cromwell	180	7.4
Villas at Creekside Phase 2	Approved	107 Creekside Dr	24	2.85

Future Conditions

Based on CAMPOS's model, the fastest population growth is projected to take place in the Kyle ETJ area west of Blanco River and Kyle's already highly populated area east of IH-35. Meanwhile, limited growth is projected to occur north and south of Kyle's downtown area. Refer to Figure 6-1 for a map of household projections in Kyle through year 2040.

Figure 6-1: Future 2040 Households

Future Conditions

Figure 6-2: 2010-2040 Household Growth

City of Kyle

Future Conditions

Employment Projections

Economic growth is one of the major goals of the Kyle TMP on behalf of the City of Kyle. Significant transportation improvement tends to follow economic development and job growth, so it is important to implement the Kyle TMP to position Kyle as a true market center that supports several job sectors. The Hays Commerce Center development may be constructed within five to ten years along Dry Hole Road. If constructed it would strengthen the economic development opportunities along $\mathrm{IH}-35$ and form a connection between Buda and Kyle.

Most of the immediate employment growth in Kyle is expected to take place in the retail and office services sectors. CAMPOS's model shows that the greatest employment growth is projected to take place north of downtown and along IH-35. Meanwhile, minimal employment growth is anticipated to take place at existing residential areas and south of downtown. Refer to Figure 6-3 for a map of employment projections in Kyle through year 2040.

Future Conditions

Figure 6-3 shows a
map of employment
projections in Kyle
through year 2040.

Figure 6-3: Future 2040 Employment
City of Kyle

Future Conditions

Figure 6-4 reinforces the previous observation
that the area north of downtown and along $\mathrm{IH}-35$ is projected to develop the largest amount of jobs within a 30-year range.

Figure 6-4: 2010-2040 Employment Growth

Future Conditions

Table 9 and Table 10 summarize the study area demographics in years 2010 and 2040.
Table 9: Demographic Comparison (2010 CAMPO)

	Population	Households	Employment
City of Kyle	28,692	9,070	4,466
ETJ	43,988	13,475	5,054
Total	$\mathbf{7 2 , 6 8 0}$	$\mathbf{2 2 , 5 4 5}$	$\mathbf{9 , 5 2 0}$

Table 10: Demographic Comparison (2040 CAMPO)

	Population	Households	Employment
City of Kyle	64,157	19,810	45,036
ETJ	140,230	43,374	50,026
Total	$\mathbf{2 0 4 , 3 8 7}$	$\mathbf{6 3 , 1 8 4}$	$\mathbf{9 5 , 0 6 2}$

Future Conditions

Road Network

In order to accommodate future expansion, land must be acquired either via purchase or enforced dedication. Roads owned and maintained by TxDOT, in general, have adequate ROW, with the exception of FM 150 aligned through downtown. Although it is possible to fit two travel lanes into county road ROW, it is preferable to have at least 100 ft of ROW before doing so. This improves aesthetics, mobility, safety, and allows for the possible future expansion to four or six lanes. Likewise, future local roads in the City of Kyle are recommended to have a minimum ROW of 60 ft to accommodate additional features like sidewalks on both sides of the road, utility easement, and a continuous left-turn lane.

This plan does not include a pavement management system, but the City is in the process of developing a program to create a more numerical, data-driven prioritization of street repair, repaving, and reconstruction.

Traffic Congestion

CAMPO's model, shown in Figure 6-5, displays the generated volumes throughout the Kyle network by year 2040. The network includes existing and proposed roads captured by CAMPO.

Future Conditions

Figure 6-5 displays the generated volumes
throughout the Kyle
network by year 2040.
The network includes existing and proposed roads captured by CAMPO.

Figure 6-5: Future 2040 Traffic Volumes

Future Conditions

The majority of the trips are expected to commute along IH-35, FM 150, and FM 1626. Figure 6-6 shows CAMPO's model for Kyle's future roadway network during year 2040. The LOS for the majority of the network is acceptable; however, segments along FM 1626, Center Street, IH35, and Old Stagecoach resulted in a LOS F which is unacceptable.

Figure 6-6: Future 2040 Level-of-Service

Future Conditions

Road Bond Program

Five roadway projects are scheduled to be constructed in the next couple of years and they are shown in Figure 6-7. Three of the five projects are located in the region stated earlier with the highest households and employment totals in year 2010 and one of the most residentially developed areas in year 2040. The Kyle City Council authorized the investment during their city council meeting on March 17, 2015.

In terms of future traffic projections and overall network connectivity, these five projects are considered fully-funded and anticipated to be constructed by approximately 2018. Table $\mathbf{1 1}$ lists the anticipated construction timeframe and total cost for each of the bond project.

Table 11: Bond Project Details

Location	Estimated Start of Construction	Estimated End of Construction	Estimated Total Cost (Million)
Goforth Road	January 2016	October 2016	$\$ 7.600$
Bunton Creek Road	September 2015	July 2016	$\$ 3.750$
Marketplace Avenue	October 2015	October 2016	$\$ 3.590$
Lehman Road	March 2016	July 2017	$\$ 6.081$
Burleson Street	November 2016	June 2018	$\$ 7.103$

(Source: City of Kyle, April 2015)
Figure 6-7: Road Bond Projects

Future Conditions

Goforth Road

The Goforth Road Traffic Operations Analysis Report was created in 2015 and it recommends the section of Goforth being redeveloped be widened to three lanes from IH-35 Northbound Frontage Road to Brent Boulevard and four lanes from Brent Boulevard to Bunton Creek Road. Other recommendations include installing a traffic signal on Bunton Creek Road and Goforth Road intersection and at Kyle Parkway and Goforth Road once it warrants.

Bunton Creek Road

The Bunton Creek Road Traffic Signal Warrant Analysis created November 2014 recommended that Bunton Creek be widened into a threelane road from the IH-35 Frontage Road to Lehman Road.

Marketplace Avenue

Marketplace Avenue will be constructed as a three-lane road from City Lights Drive to Burleson Street

Lehman Road

Improvements on Lehman Road include adding dedicated left turns at cross streets from RR 150 to Goforth Road. Lehman Road Traffic Signal Warrant Study completed in October 2014 did not recommend a signal be installed at the intersection of Lehman Road and Goforth Road until volumes warrant.

Burleson Street

Burleson Street will maintain the two-lane cross section from Miller Street to Lockhart Street and then incorporate a Two-Way Left-Turn Lane (TWLTL) up to IH-35 Frontage Road.

Future Conditions

Immediate Development

IH-35

$\mathrm{IH}-35$ has been and will continue to be under construction for the next several years as it is redeveloped to serve the increasing population and traffic demand in Texas. Improvements to the overpass bridge at Yarrington Road over IH-35 include realigning and widening segments of the IH - 35 Frontage Road, replacing the bridge with a sixlane structure, and incorporating turnaround bridges on both directions. This project is estimated to be completed by early 2016.

In July, 2015 TxDOT updated the I-35 Capital Area Improvement Program (Mobility35) to include the 24-mile segment of IH-35 (SH 45E to Posey Road) in Hays County. All concepts in the report have yet to go through the National Environmental Policy Act (NEPA), Plan Specifications and Estimates (PS\&E), and construction. The main objective of the Mobility35 is to install additional freeway lanes in each direction on IH-35; known as the Future Transportation corridor (FTC).

Out of the $\$ 1.06$ billion dollars of IH-35 construction work proposed in Hays County, $\$ 243,656,000$ is located in the Kyle's city limits. Projects listed in this study will progress as funding is identified.

Future Conditions

All IH-35 improvements in Hays County were separated into fifteen projects;

 with four located in the City of Kyle.Project B - FTC Kyle: This project proposes to install an additional lane each direction on $\mathrm{IH}-35$ and serve as general purpose lanes or managed lanes. Facilities for pedestrian and cyclists will be upgraded throughout the corridor. Bridge structures proposed to be upgraded include Plum Creek and Bunton Branch. Total: \$202,144,000 (Unfunded)

Project E - Ramp Reversals: This project proposes to reverse the configuration of four northbound ramps between Kyle Crossing and RM 150.

Total: \$19,943,000 (Schematic and Environmental Funded)

Project F - FM 1626 (Kyle Parkway) DDI: This project proposes to reconfigure the existing bridge into a Diverging Diamond Interchange (DDI) once traffic operations produce an undesirable LOS Total: \$10,060,000 (Unfunded)

Project G - Center Street (RM 150): This project proposes to add turnlanes on all approaches except the southbound approach. Widening along the underpass bridge is proposed to facilitate minimum pedestrian and bicycle standards Total: \$11,509,000 (Unfunded)

(Source: I-35 Capital Area Improvement Program, July 2015)
Figure 6-8: IH-35 Project Limits in City of Kyle

Future Conditions

Lone Star Rail

The proposed Lone Star Rail (LSTAR) route has identified a station for Kyle/Buda, currently planned for the area near Kyle Parkway (FM 1626). The overall route connects 16 proposed stations between greater Austin and San Antonio metropolitan areas by utilizing the existing Union Pacific track. Currently an Environmental Impact Statement (EIS) is being produced for the project. LSTAR is anticipated to start final design and construction in 2016 or 2017.

PROPOSED LSTAR ROUTE MAP

(Source: http://lonestarrail.com)
Figure 6-9: Proposed Lone Star Rail

Future Conditions

FM 150 East

Hays County is providing funds to improve FM 150 from Lehman Road to SH 21 by constructing a center turn lane and shoulders. This project is expected to start construction during year 2016.

FM 150 West

Hays County and TxDOT plan to realign the existing FM 150 roadway from Arroyo Ranch Road to IH-35. This corridor will relieve congestion from Center Street and alleviate downtown circulation. In April 2015, the project team announced that Corridor C shown in Figure 6-10 had been selected, largely due to its high level of constructability, reasonably direct route, and avoidance of existing development. FM 150's specific alignment will be under development by Hays County.

The new corridor will affect development and safety west of Kyle so Hays County plans to conduct an FM 150 West Character Plan to determine an eastwest corridor and plan for corridor preservation. The opportunity to extend FM 150 to US 290 may be considered in the plan.

(Source: http://improvefm150.com, April 2015)
Figure 6-10: FM 150 Corridor C

Future Conditions

FM 2001

TxDOT and Hays County are currently working on the realignment of FM 2001. The proposed alignment as of October 2015 is shown in
Figure 6-11 and located along the north-east corner of Kyle's ETJ.

Kyle Parkway

Kyle Parkway is proposed to be extended from its current terminus east of IH-35, east to SH 21 by creating a connection to Cotton Gin. This project requires land to be acquired within the City of Kyle, Kyle's ETJ, and Uhland.

Figure 6-11: FM 2001
Realignment
(Source: Kimley-Horn Associates, October 2015)

City of Kyle

07

 Thoroughfare

 Thoroughfare Planning and Planning and Corridor Analysis

 Corridor Analysis}

Thoroughfare Planning and Corridor Analysis

Functional Classification

The design of each corridor is affected by the amount of traffic it is projected to serve, as well as its role in the regional system. This concept is known as functional classification and all classifications identified in this plan are listed below.

Freeway

Freeways are major roads with full control of access with no grade crossings for motorized travel only. The only existing freeway within Kyle is IH-35 and it moves people and goods at the regional, statewide and national level.

Major Arterial

Major arterials, such as FM 1626 and FM 2001, are roads that are within the City's jurisdiction but maintained by TxDOT. Major arterials are designed to carry large volumes of traffic longer distances throughout the region.

Minor Arterial

Minor arterials, along with major arterials, are the main roadways within a city's street network. They are designed to carry large volumes of traffic longer distances throughout the city. Multiple, varying land uses are connected by arterials. Cities around Kyle, such as San Marcos and Buda, are also connected to Kyle and each other by arterials such as FM 150 and SH 21.

Thoroughfare Planning and Corridor Analysis

Collector

Collectors are designed to carry large amounts of traffic over short distances within the city. Collectors may have typical sections similar to arterials; however, a collector provides access to development, and is not intended to carry traffic over the same distance as arterials.

Local

Local streets exist primarily to provide access to properties immediately adjacent to the street right-of-way, such as single-family homes. These streets are typically narrower, with low speed limits, on-street parking, and numerous driveways.

Multi-Use Path

Multi-use paths are designed pathways for pedestrian and cyclists to safely maneuver around the city along their separate route.

Thoroughfare Planning and Corridor Analysis

Typical Section

The established typical sections applied the Complete Streets policy when it was applicable. Typical sections are determined from its functional classification, surrounding land uses, and presence of shared facilities. Shared facilities could include a major bus route, bike lanes, or sidewalks. These shared facilities are intended to be accomplished within the context of overall roadway construction/reconstruction, wherever possible, in order to save costs and reduce construction related disruptions to the community.

Several typical sections depict parking lanes and the width required for parallel parking is dependent on the functional class of the road. According to AASHTO, seven feet is the absolute minimum for parallel parking and is unacceptable on arterials. Eight feet is the desirable width for parallel parking on most roads and the minimum to be allowed on arterials. For arterials, ten feet is the desirable width for a parking lane because it can also function as a turning lane at intersections. The AASHTO 2012 Guide for the Development of Bicycle Facilities recommends a 6-to-8-foot lane width along high bicycle use corridors to make passing or riding side-by-side possible. The minimum lane width a bike lane can have is four feet and it applies to roadways with a posted speed limit of 45 mph or less and with curb and no gutter. The right-of-way listed for each typical section is the minimum required for each configuration, but as mentioned before 100 ft ROW is recommended for future expansion. An exhibit for each typical section listed in Table $\mathbf{1 2}$ can be found in Appendix \mathbf{D}.

Thoroughfare Planning and Corridor Analysis

Table 12 - Typical Section Summary

Classifications	Typical Section	Note
Multi-Use Path	MUP	12' bi-directional multi-use path
Local	L2U	Basic 2-lane section for direct lot access
 Minor Arterial	R2U	Existing sections without sidewalks or curb/gutter. Not permitted for new construction within Kyle
Collector	C2U	Wider section for commercial areas; bike and parking are optional
Collector	C2U - Bike or Parking	Wider section for residential areas; two striped outside lanes for bikes or parking
Collector	C3U	2-lane section with two-way left-turn lane
Collector	C4U	Basic 4-lane collector section
Collector	C4U - Bike or Parking	Two striped outside lanes for bikes or parking
Collector \& Minor Arterial	C4D	Basic 4-lane arterial section
Collector \& Minor Arterial	C4D - Bike or Parking	Two striped outside lanes for bikes or parking
Collector \& Minor Arterial	C5U	4-lane section with two-way left-turn lane
Minor Arterial	Basic 4-lane arterial section for high speed roads (>40 mph)	
Minor Arterial	P4D - Bike	12' lanes, with 12' multi-use path for Hike and Bike Trail Segments
Minor \& Major Arterial	P6D	Basic 6-lane arterial section with 12' lanes
Minor \& Major Arterial	P8D	Basic 8-lane arterial section with 12' lanes

L=Local R=Rural $\quad C=$ Collector \quad =Principal \#=Number of lanes U=Undivided, $\quad D=$ Divided

Thoroughfare Planning and Corridor Analysis

Cost estimates for all typical sections were calculated in May 2015 using TxDOT's average low-bid unit prices. A bond project's cost estimate, Goforth Road, was utilized as the bases for this plan's cost estimates. All estimates shown in Table 13 take into account the entire proposed cross section and include a 20% pre-construction, 10% constructions oversight, and a 10\% contingency cost. Construction costs include roadway, traffic control, drainage, pavement marking and signs, utilities, SW3P, and a 10% mobilization cost. Detailed cost estimates, per typical section, are located in Appendix D.

Out of the 15 typical sections created only 9 were assigned to this plan's proposed network; however, all typical sections were listed and cost estimates calculated for the City's future use

Table 13 - Typical Section Cost Estimate

Typical Section	ROW	Cost Estimate (per Mile)	
		w/o ROW Cost	w/ ROW Cost
MUP	24^{\prime}	$\$ 900,000$	$\$ 3,400,000$
L2U	60^{\prime}	$\$ 5,500,000$	$\$ 11,800,000$
R2U	60^{\prime}	$\$ 3,600,000$	$\$ 7,400,000$
C2U	60^{\prime}	$\$ 6,100,000$	$\$ 12,400,000$
C2U - Bike or Parking	60^{\prime}	$\$ 6,200,000$	$\$ 12,500,000$
C3U	60^{\prime}	$\$ 6,300,000$	$\$ 12,600,000$
C4U	70^{\prime}	$\$ 6,700,000$	$\$ 14,100,000$
C4U - Bike or Parking	80^{\prime}	$\$ 7,700,000$	$\$ 16,100,000$
C4D	80^{\prime}	$\$ 7,400,000$	$\$ 15,800,000$
C4D - Bike or Parking	90^{\prime}	$\$ 8,500,000$	$\$ 18,000,000$
C5U	80^{\prime}	$\$ 7,600,000$	$\$ 16,000,000$
P4D	105^{\prime}	$\$ 8,700,000$	$\$ 19,800,000$
P4D - Bike	110^{\prime}	$\$ 9,000,000$	$\$ 20,600,000$
P6D	130^{\prime}	$\$ 10,300,000$	$\$ 24,000,000$
P8D	150^{\prime}	$\$ 11,800,000$	$\$ 27,600,000$

Thoroughfare Planning and Corridor Analysis

Proposed Network

Communication with City staff and the public throughout the project selection process was a key factor to providing the City of Kyle a network plan that would be able to support future business and residential growth. Several steps were taken to finalize the project list.

1. Locate projects in previous studies not yet constructed (Section 3)
2. Collect input from the public and stakeholders (Section 4)
3. Analyze future projections and determine needs (Section 6)

Roadway classifications for the proposed 2045 Kyle network is shown in Figure 7-1. The City of Kyle will have two main corridors connecting the city, Kyle Loop on the west and Turnersville Road on the east. Kyle Loop will serve as a connection to Buda's Truck Bypass and San Marco's
FM 110.

Figure 7-1: Future 2045 Road Classification

Thoroughfare Planning and Corridor Analysis

After a roadway classification was assigned to each project in the proposed network, typical sections were appointed and cost estimates were calculated. Typical sections were matched to general crosssection descriptions in previous plans or to tie into existing surrounding roads. Project cost estimates were derived from the typical section cost estimates per mile, but were adjusted slightly to match each project's description. For example, an existing road would require additional traffic control compared to a new road that only requires barriers along both project limits. Also, certain projects require additional ROW while some do not, as shown in Figure 7-2. Existing ROW lengths were measured using Hays Central Appraisal District Map while the proposed ROW lengths were determined by the typical sections.

Figure 7-2: Future 2045 Right-of-Way Required

Thoroughfare Planning and Corridor Analysis

Other types of projects that did not fit a specific typical section were given a general cost estimate; $\$ 100,000$ total cost for a minor improvement, $\$ 300,000$ total cost for a traffic signal, and $\$ 500,000$ construction cost for a two-lane roundabout. Bridge cost estimates were individually calculated and they included structure, retaining wall, and aesthetic costs if needed. An additional $\$ 1$ million were added to roadway projects that crossed a body of water and an additional \$2 million were added if a roadway crossed the UPRR track. Grade separation is recommended at railroad tracks to avoid delay and accidents. The estimated cost to design and build all 96 proposed projects is $\$ 2,037,240,000$ while $\$ 580,040,000$ falls under the ownership of the City of Kyle, as shown in Table 14. A detailed list of all projects and cost estimates is located in Appendix G.

Table 14 - Cost Estimate Total by Owner

Owner	Total Cost
Kyle	$\$ 580,040,000$
Hays-ETJ	$\$ 486,300,000$
Hays-non-ETJ	$\$ 398,120,000$
TxDOT	$\$ 572,780,000$
TOTAL	$\mathbf{2 2 , 0 3 7 , 2 4 0 , 0 0 0}$

Thoroughfare Planning and Corridor Analysis

Corridor-Specific Descriptions

All proposed projects, shown in Figure 7-3 and described below, are conceptual and drawn for connectivity. When engineering plans are developed for roadway construction, minor shifts of alignment and minor changes in right-of-way widths may be necessary to avoid existing properties, natural constraints, or infrastructure constraints. Corridor descriptions may have been modified from the original reference to better fit this plan's proposed network.

Figure 7-3: Future 2045 Proposed Projects

Thoroughfare Planning and Corridor Analysis

Arterial Streets

CAMPO proposes an improvement program that funds various roadway maintenance projects like repaving and reconstruction, Total: \$23,700,000

Bebee

The public proposes a new 2-lane divided road with TWLTL to create a connection between two east-west corridors Kohlers Crossing and Bebee, Total: \$7,340,000

Bebee/High

CAMPO proposes widening to a 2-lane divided road with TWLTL and bike lanes over Porter Creek to better serve future development like Sunset Hills and existing cyclists, Total: \$49,420,000

Bunton/Goforth

CAMPO proposes widening to a 2-lane divided road with TWLTL up to 900' W of Brandi Circle as part of the bond program, Total: \$3,800,000

Bunton/ Grist Mill

CAMPO proposes a new 2-lane divided road over Plum Creek with a connection to FM 2720 at SH 21. This project requires land to be acquired within the City of Kyle, Kyle's ETJ, and Uhland, Total: \$72,640,000

Burleson

CAMPO proposes widening to a 2-lane divided road with TWLTL, with a sidewalk on 1 side at a minimum, as part of the bond program, Total: \$7,100,000

City of Kyle

Burleson

Kyle proposes widening to a
2-lane road as part of the bond program, Total: \$1,400,000

Burleson (Cromwell)

Kyle proposes a new 4-lane divided road (NLR10) over Plum Creek to serve existing Plum Creek and future Creekside Village neighborhoods, Total: \$19,640,000

Center

CAMPO proposes installing a traffic signal at FM 150 to ensure a desirable LOS. If Scott is realigned to connect at this T-intersection it will add additional trips, Total: \$300,000

Center

CAMPO proposes widening parking and improve pedestrian safety around downtown to improve walkability at the heart of Kyle, Total: \$1,900,000

Center

CAMPO proposes installing a traffic signal at Old Stagecoach to ensure a desirable LOS, Total: \$300,000

Center

Kyle proposes installing a traffic signal (S6) at Old 81 to ensure a desirable LOS, Total: \$300,000

Center

CAMPO proposes widening to a 4-lane road as it connects downtown to future development on the west, Total: \$4,520,000

Centex

Kyle proposes a new 2-lane road over Onion Creek and in Kyle's ETJ to connect northern roads,

Total: \$17,220,000

Thoroughfare Planning and Corridor Analysis

Centex

Kyle proposes a new 2-lane road over UPRR and located outside of Kyle's ETJ to connect northern roads, Total: \$30,820,000

CR 158

CAMPO proposes to eliminate the intersection skew at CR 134 because not all turns are currently possible, Total: \$100,000

CR 158

CAMPO proposes widening to a 4-lane road to serve new trips generated by La Salle MUD, Total: \$19,180,000

CR 158

Kyle proposes a new 4-lane road to serve new trips generated by La Salle MUD and to provide an additional east-west connection from $\mathrm{IH}-35$ to SH 21, Total:
\$21,080,000

Creekside

The public proposes a new
2-lane road over Plum Creek to connect Creekside to Bunton and serve future residents at Lehman Tract and Hidden Valley, Total: \$16,500,000

Cypress

Kyle proposes widening to a 4-lane road (R27) to serve future Cypress Forest and GLO residents along the southern border, Total: \$29,000,000

Dacy

CAMPO proposes widening to a 4-lane road over Richmond Branch to match the recently updated section to the south, Total: \$43,380,000

E Post

Kyle proposes widening to a 2-lane road (R29), Total:
\$5,660,000

FM 150

Kyle proposes a new 2-lane roundabout at Kyle Loop to create a continuous flow of traffic without having to install a traffic signal, Total: \$1,000,000

FM 150 (W)

CAMPO proposes widening to a 2-lane divided road with TWLTL to improve Kyle's downtown, Total: \$11,200,000

FM 150 (W)

CAMPO proposes widening to a 2-lane divided road with TWLTL to reinforce a main collector, Total: \$4,200,000

FM 150 (W)

CAMPO proposes widening to a 4-lane divided road with TWLTL to support future development on the west, Total: \$45,100,000

FM 150 (W)

CAMPO proposes widening to a 4-lane divided road with TWLTL
to support future development on the west, Total: $\$ 13,160,000$

FM 1626

Hays County proposes widening to a 6-lane divided road over UPRR to serve future residents on the east side of Plum Creek Phase 2 and trip from and to Buda, Total: \$35,700,000

FM 1626

Kyle proposes installing a much needed traffic signal (S13) at Kohlers Cr to ensure a desirable LOS and create a safer intersection, Total: \$300,000

FM 1626

Hays County proposes widening to a 6-lane divided road to match the southern segment, Total: \$12,600,000

Thoroughfare Planning and Corridor Analysis

FM 2770

CAMPO proposes widening to a 4-lane road with optional bike or parking lanes over Plum Creek to serve future residents on the west side of Plum Creek Phase
2, Total: \$26,600,000

FM 2770

Hays County proposes widening to a 4-lane divided road to tie into the southern segment, Total: \$14,420,000

Goforth

Kyle proposes widening to a 4-lane road over Richmond Bunton Branch to serve additional trips in the area, Total: \$11,240,000

Goforth

The public proposes a new
2-lane road over Porter Creek to create an additional north-south
connection between Bebee and Bunton, Total: \$16,980,000

Goforth

CAMPO proposes widening to a 2-lane divided road with TWLTL to tie into Shadow Creek which will serve future Crosswind MUD residents, Total: \$11,100,000

Goforth

Kyle proposes a new 4-lane divided road to connect Bunton Creek with Kyle Parkway and relieve IH-35 frontage roads, Total: \$3,440,000

Goforth

CAMPO proposes widening to a 4-lane; sidewalk on one side as part of the bond program, Total: \$7,600,000 (Cost includes next two projects)

Goforth

CAMPO proposes widening to a
2-lane divided road with TWLTL
over Plum Creek as part of the bond program.

Goforth

Kyle proposes installing a rightturn lane at the school (15) as part of the bond program.

Goforth

CAMPO proposes installing a traffic signal at Bunton as part of the bond program, Total:
\$300,000

Goforth

CAMPO proposes installing a traffic signal at Lehman and improving the sight distance in the east quadrant as part of the bond program, Total: \$300,000

Grist Mill

Kyle proposes installing a traffic signal at Turnersville Extension to ensure a desirable LOS, Total: \$300,000

Hillside Terrace

CAMPO proposes widening to a 2-lane road with optional bike or parking lanes over Andrews Branch to support any future development, Total: \$13,020,000

IH-35

CAMPO proposes improvements like the addition of shared use paths and auxiliary lanes along IH-35 (TxDOT Projects B, F, G), Total: \$223,710,000

Thoroughfare Planning and Corridor Analysis

IH-35

CAMPO proposes Express Bus on HOV/HOT ramps on IH-35 to serve the increasing population/ ridership near the Austin area,
Total: \$36,000,000

IH-35

CAMPO proposes operational improvements; reversing ramps and bridge modifications (TxDOT Project E), Total: \$19,950,000

IH-35

Kyle proposes to eliminate the intersection skew at CR 131 (I3) to improve the safety of local drivers, Total: \$100,000

Kelly Smith

Kyle proposes a new 2-lane road with optional bike or parking lanes over Andrews Branch because it was identified as a missing connection in Shadow

Creek's neighborhood, Total:
\$5,940,000

Kohlers Crossing
CAMPO proposes installing a traffic signal at Kyle Crossing to ensure a desirable LOS, Total:
\$300,000

Kohlers Crossing

The public proposes a new bridge; grade separation over UPRR to decrease delay and improve safety, Total: \$3,680,000

Kohlers Crossing

The public proposes a new bridge; grade separation over IH-35 and create a continuous east-west corridor with Bebee, Total: \$1,840,000

Kyle Crossing

Kyle proposes a new 2-lane road over UPRR and Bunton

Branch to serve future residents in Plum Creek Phase 2, Total: \$29,700,000

Kyle Crossing

CAMPO proposes widening to a 2-lane road over Bunton Branch to match the new section to the west, Total: \$15,540,000

Kyle Loop (NF17)

Hays County proposes a new
4-lane divided road, also known as the FM150 west realignment, along the southern portion of Kyle. The alignment of the corridor will be studied by Hays County. This corridor is intended to relieve FM150(W) and serve new development west of IH-35 like GLO, Total: \$67,200,000

Kyle Loop (West)

CAMPO proposes a new
4-lane divided road to form a
connection over Old Stagecoach,
Total: \$7,740,000

Kyle Loop (West)

CAMPO proposes a new
4-lane divided road to connect Kyle Loop to IH-35, Total:
\$30,140,000

Kyle Loop (West)

CAMPO proposes a new 4-lane divided road with TWLTL, over Onion Creek and along the northern portion of Kyle, to serve new development like Anthem. At FM 1626, Kyle Loop will link to Buda's Truck Bypass, Total: \$74,040,000

Kyle Loop (West)

Kyle proposes a new 4-lane divided road with TWLTL to extend the northern section to the new road N Lime Kiln, Total: \$15,960,000

Thoroughfare Planning and Corridor Analysis

Kyle Loop (West)

Kyle proposes installing a traffic signal at FM 1626 to ensure a desirable LOS, Total: \$300,000

Kyle Loop (West)

Kyle proposes a new 2-lane roundabout at Roland to ensure a desirable LOS at a skewed intersection, Total: \$1,200,000

Kyle Marketplace

CAMPO proposes a new 2-lane divided road with TWLTL over Plum Creek Frontage as part of the bond program, Total: \$3,600,000

Kyle Pkwy

Kyle proposes a new 2-lane road over Bunton Branch to create an additional east-west connection from IH-35 to SH 21, Total: \$17,240,000

Lehman

CAMPO proposes widening to a 2-lane road over Plum Creek with left turn lanes and sidewalk on 1 side as part of the bond program, Total: \$6,100,000

Lime Kiln

CAMPO proposes widening to MAU2 with a connection over Blanco River to Cypress Rd. This provides an additional connection to San Marcos, Total: \$24,220,000

Loop 4

The public proposes a new 2-lane divided road with TWLTL for a more direct route to Kyle Crossing and to serve future employees at Hays Commerce Park, Total: \$7,580,000

Marketplace Ave

CAMPO proposes a new 4-lane divided road to give Marketplace
an additional access point, Total: \$10,980,000

Moonlite Meadows

Kyle proposes a new 2-lane road because it was identified as a missing connection north of Bebee, Total: \$6,920,000

N Lime Kiln

Kyle proposes a new 2-lane road to serve the west side of the new development GLO. A connection over Blanco River was not possible due to a conservation easement, Total: \$35,760,000

NF1 (Turnersville Rd)

Hays County proposes a
new 6-lane divided road
over five creeks to serve as a continuous north-south arterial, located east of IH-35, Total: \$276,980,000

NLR13

Kyle proposes a new 4-lane road to serve the west side of the new development La Salle MUD, Total: \$32,640,000

NLR24

Kyle proposes a new 4-lane road to serve the central portion of the new development GLO,
Total: \$27,760,000

NLR25

Kyle proposes a new 4-lane road over Clear Fork Plum Creek to serve the central portion of the new development La Salle MUD, Total: \$24,320,000

NR1

Kyle proposes a new 2-lane road with optional bike or parking lanes over Andrews Branch because it was identified as a missing connection, Total: \$20,240,000

Thoroughfare Planning and Corridor Analysis

NR2

Kyle proposes a new 2-lane divided road with TWLTL to connect Marketplace to Kyle Crossing, Total: \$6,420,000

Old 81

Kyle proposes widening to a 2-lane divided road (R16) with optional bike or parking lanes, Total: \$6,300,000

Old Stagecoach

CAMPO proposes widening to a 2-lane road with optional bike or parking lanes to serve the east portion of the new development GLO and existing cyclists, Total:
\$34,020,000

Opal

CAMPO proposes a new bridge, grade separation over IH-35 to create an additional east-west connection over IH-35, Total: \$1,260,000

Opal

Kyle proposes widening to a 4-lane road (R24) over UPRR to serve future development, Total: \$16,780,000

Opal

The public proposes a new 4-lane road to connect the new bridge with CR 158, Total: \$6,480,000

Opal

Kyle proposes a new 4-lane road (NLR21) to serve
future development, Total:
\$21,620,000

Plum Creek

Kyle proposes a new 2-lane road because it was identified as a missing connection, Total: \$12,340,000

Post

Hays County proposes widening to a 4-lane road over Blanco River to support traffic from Old Stagecoach, Total: \$16,800,000

RM 150

Hays County proposes widening to a 2-lane divided road with TWLTL to support additional trips generated by new development north and south of the corridor, Total: \$24,080,000

RM 150

The public proposes improving the sight distance at CR 202
to improve driver safety, Total:
\$100,000

Roland

Kyle proposes widening to a 4-lane road (R26) to support future development, Total:
\$13,180,000

S Main

Kyle proposes a new 2-lane road (NLR6) to create an additional north-south corridor connecting downtown to Kyle Loop, Total:
\$26,180,000

Satterwhite

Hays County proposes widening to a 2-lane road over Brushy
Creek to support trips generated from Turnersville, Total:
\$9,380,000

Satterwhite

Kyle proposes a new 2-lane road over Brushy Creek to create a smooth transition to Hillside

Terrace, Total: \$9,140,000

Scott

Kyle proposes widening to a
4-lane road (R31) and realigning
1,100 feet to connect with FM
150, Total: \$6,260,000

Thoroughfare Planning and Corridor Analysis

SH 21

CAMPO proposes widening to a 6-lane divided road over four creeks due to the growing population south of Austin, Total: \$104,260,000

SH 21

The public proposes installing a traffic signal at Grist Mill to ensure a desirable LOS, Total: \$300,000

Shadow Creek

CAMPO proposes a new 2-lane divided road with TWLTL because it was identified as a missing connection in Shadow Creek's neighborhood, Total: \$10,960,000

Shadow Creek

Kyle proposes a new 4-lane road to tie into the existing section and aligned to reflect
the proposed Crosswinds MUD plans, Total: \$16,780,000

Sunrise

Kyle proposes a new 2-lane road over Richmond Branch because it was identified as a missing connection, Total: \$8,800,000

Windy Hill

CAMPO proposes widening
to a 2-lane divided road with TWLTL and over two creeks to serve future trips generated north of Crosswinds MUD, Total:
\$25,200,000

Yarrington

CAMPO proposes widening to a 4-lane divided road that connects Kyle Loop with
Turnersville. The connection to $\mathrm{IH}-35$ is proposed to have a smooth curve than the existing 90 degree alignment, Total:
\$29,060,000

08 Project Áction Plan

Project Action Plan

After the proposed projects for the City of Kyle were finalized, evaluation criterions were determined to strategically rank all 96 projects, while keeping the plan's goals in mind. Eight criterions, totaling 100 points, were selected to capture the most crucial projects for the City of Kyle. Specific descriptions for each criterion are listed in Table 16.

Table 15 - Project Evaluation Matrix

Evaluation Criteria								n 0 0 0 0 0 0 0 0 0 0 0 0 0
	H-M-L	Y/N	L-M-H	N/Y	Y/N	H-M-L	N/Y	Y/N
Possible Points (100)	20	20	15	15	10	10	5	5
High	20		5			10		
Medium	10		10			5		
Low	5		15			0		
Yes		20		5	10		0	5
No		10		15	5		5	0

Project Action Plan

Table 16 - Project Criteria Descriptions

Criteria	Level	Description
Congestion Mitigation	High	Level-of-Service improves from CAMPO's 2040 model, on or adjacent to road
	Medium	Level-of-Service maintains the same as CAMPO's 2040 model, on or adjacent to road
	Low	Level-of-Service worsens in CAMPO's 2040 model, on or adjacent to road
Additional Connectivity	Y	Provides additional travel opportunities that will allow people to travel to a variety of places in a variety of paths like bicycle paths, routes, and trails. (15-new connection, 20-new connection and multi-modal)
	N	Does not provide additional travel opportunities that will allow people to travel to a variety of places in a variety of paths like bicycle paths, routes, and trails. (5- existing connection, 10-existing connection and multi-modal)
Relative Cost / Feasibility	Low	Less than \$15M and/or easily fundable
	Medium	Between \$15M-\$30M and/or moderate funding challenges
	High	More than \$30M and/or heavy funding challenges
ROW Required	N	No ROW (\$0) is expected to be required
	Y	ROW (more than \$0) is expected to be required
Supports Economic Development	Y	Supports and located adjacent to new development or undeveloped area
	N	Does not support or located adjacent to new development or undeveloped area
Supported by Community	High	Much needed project that is highly supported by the community. (Includes projects recommended by public, bond projects)
	Medium	Neither highly supported nor highly against
	Low	Project that is likely to not receive funding and not highly supported by the community
Environmental / Construction Issues	N	No environmental or construction issues are expected, based on site location (crossing body of water or railroad) or past studies
	Y	Some environmental or construction issues are expected, based on site location (crossing body of water or railroad) or past studies
Drainage Benefits	Y	Drainage is currently or expected to be an issue in this area, based on site location (in floodplain and existing road) or past studies
	N	Drainage is not currently or expected to be an issue in this area, based on site location (in floodplain and existing road) or past studies

Project Action Plan

Congestion mitigation compared CAMPO's future LOS model in Section 6 with the proposed network LOS model, shown in Figure 8-1. Volume distribution for the proposed network is shown in

Appendix C. Proposed corridors connected to IH-35 provide vehicles additional routes which alleviate congestion along $\mathrm{IH}-35$.

Figure 8-1: 2040 Level-of-Service for Proposed Network

Project Action Plan

Figure 8-2: 2016-2045 Project Prioritization

All proposed projects are visually prioritized in

Figure 8-2 by color, red being the highest priority and green being the lowest priority. This scale includes all projects, regardless of whether their ultimate responsibility lies with for the City of Kyle or another entity. The full listing of projects in

Appendix F identifies projects by primarilyresponsible entity.

Project Action Plan

The top 20 ranked projects for the study area are listed in Table 17, including the top 10 projects under Kyle's ownership.

Table 17 - Ranked Projects (Top 20)

Rank	Owner	Project	From	To	Total Cost
1	Kyle	Bebee	IH-35	Bebee	\$7,340,000
2	TxDOT	IH-35	Kyle Crossing	RM 150	\$19,950,000
3	Kyle	Goforth	Bunton Creek	Kyle Pkwy	\$3,440,000
4	Kyle	Goforth	Brent Blvd	Bunton Creek	\$7,600,000
5	TxDOT	Opal	at IH-35	-	\$1,260,000
6	Kyle	Opal	IH-35	CR 158	\$6,480,000
7	Hays-non-ETJ	CR 158 (Opal-East)	IH-35	Turnersville Extension	\$19,180,000
8	Kyle	Kyle Crossing	IH-35 @ Old Bridge Trail	FM 967	\$15,540,000
9	Kyle	Post	IH-35	Blanco River Ranch	\$16,800,000
10	TxDOT	FM 1626	at Kohlers Cr	-	\$300,000
11	TxDOT	FM 1626	Kyle Loop	FM 2770	\$12,600,000
12	TxDOT	IH-35	at CR 131	-	\$100,000
13	Kyle	Kohlers Crossing	at Kyle Crossing	-	\$300,000
14	Kyle	Loop 4	FM 967	Kyle Crossing	\$7,580,000
15	Hays-non-ETJ	Satterwhite	FM 2001	Turnersville Extension	\$9,380,000
16	Hays-non-ETJ	Centex	FM 1626	IH-35	\$30,820,000
17	Kyle	Old Stagecoach	Post	FM 150	\$34,020,000
18	TxDOT	FM 2770	FM 1626	FM 150	\$26,600,000
19	Hays-non-ETJ	Kyle Loop (West)	NF17	N Lime Kiln	\$15,960,000
20	Kyle	Burleson	South	Lockhart	\$1,400,000

Project Action Plan

Ranked projects were then further sorted by City of Kyle Council Districts to assist each individual district analyze the list of projects. All detailed tables can be found in Appendix F. The Kyle City Council is composed of six Council Members, three elected at large and one from each of the three districts shown in Figure 8-3, and a Mayor elected at large.

City of Kyle

Figure 8-3: City of Kyle Council Districts

09 Implementation

Financing And Implementation

The implementation of the Kyle Transportation Master Plan requires both a comprehensive set of funding and financing options and a sustained commitment by the City of investment in the phased development of roadway projects. Critical to that process is recognizing and implementing funding solutions that match projects and identifying strategies to leverage City funds with other funding sources (e.g., Hays County, TxDOT, CAMPO, the private sector).

Sustainable City Funding Sources

Under the Local Government Code, the City of Kyle has a number of options available to create new transportation revenue sources, as well as manage existing general revenue funds for specific transportation purposes. The following is a brief discussion of these options and possible uses to implement the City's Transportation Master Plan.

Transportation Impact Fee

The City of Kyle still has a significant amount of residential and non-residential land to be developed as the City grows over the next 20 years. An impact fee ordinance, coupled with a Capital Improvement Plan, could generate significant funds to expand existing roads, develop new corridors, and make significant safety and operational improvements. These improvements, funded through an impact fee ordinance, could reduce the City's obligation to fund these improvements in the future.

Transportation Fee

A number of Texas cities have adopted a transportation fee to raise funds for street maintenance and reconstruction. The fee is normally assessed and collected based on water taps/meters. The fee can be adjusted by the City Council over time. Using the transportation fee for street maintenance could free up general revenue funds for new construction.

Financing And Implementation

Land Development Code/Zoning Ordinance

As the City of Kyle continues to grow and develop both within the City limits and the ETJ, the City Council should consider amendments to the Land Development Code related to right of way dedication and right of way preservation. The Land Development Code could also develop a Boundary Street policy requiring developer participation in improvements to adjacent roadways, as well as sidewalks and bike/ trail facilities. A strong Land Development Code could help offset future City cost in the developing parts of the City.

The city has expressed interest in modifying the existing road fee, currently based on the perimeter of a property which fronts roads to be improved. Issues have been raised relative to large subdivisions with small frontages (essentially 'flag lots') having relatively low fees compared to smaller parcels with less traffic impact but larger fees due to larger frontages. As of 2015, the Planning Department is exploring changing the fee basis to some combination of parcel size, number of residential units, and/or amount of commercial space. Although the city has little additional bonding capacity at present, as existing bonds are paid off, there is the potential to issue additional bonds speculatively, rather than for existing projects. Although politically riskier, this allows the flexibility to pay off older, higher-interest debt, as well as commit funding to design and/or construction in future years without identifying projects in advance
of the election, or holding new elections. The 2015 road bonds for Harris County were structured this way.

In addition to new ordinances and fee proposals, the City Council should consider establishing a policy related to the annual budget and use of General Fund dollars for transportation purposes. A number of cities, as well as counties, set aside a percentage or specific amount ($\$ 0.01$ to $\$ 0.03$) of the General Fund budget—by policy—every year. These funds, again by policy, can be used for project development costs (environmental, design, etc.) and/or right-of-way acquisition and corridor preservation. Having an annual dedicated funding source would allow the City to get ahead of the roadway development process and have projects "shovel ready" when a source of construction funds becomes available, whether federal, state or local. These dedicated funds could also be used for transportation projects related to economic development opportunities.

Also in the realm of policy, right-of-way preservation, through purchase or enforced dedication, is critical to the implementation of corridors identified on the plan, particularly those on new locations. Many cities around the state compel dedication of planned and mapped new thoroughfares as a condition of plat approval.

Financing And Implementation

Project Implementation Recommendations

While it may be desirable to address projects on an individual basis, it is generally a better approach to address a broader corridor solution. By expanding the limits and scope of a project, there are more opportunities to forge financial partnerships and open doors to other funding sources. As such, using the table of priority projects, we have grouped together several individual projects into three larger projects with a broader scale. Cost estimates represent total project costs.

Table 18 - Project Implementation

No.	Project / Proposed Improvement(s)		Cost
1.	Bebee Road - New and widen to 2-lane divided with center turn lane		
	Priority 1	IH-35 to Bebee Road	\$7.5 million
	Priority 41	$\mathrm{IH}-35$ to SH 21	\$49.5 million
		Total	\$57.0 million
2.	CR 158/Opal Lane - New and widen to 4-lane divided corridor		
	Priority 5	IH-35/Opal Lane- new overpass	\$1.5 million
	Priority 6	IH-35 to CR 158	\$6.5 million
	Priority 7	IH-35 to Turnersville Ext.	\$19.0 million
	Priority 89	IH-35 to Old Stagecoach- Expanded Road with UPRR overpass	\$17.0 million
		Total	\$44.0 million
3.	Goforth Road - New and widen to 4-lane divided corridor		
	Priority 3	Bunton Creek to Kyle Parkway	\$3.5 million
	Priority 4	Brent Blvd. to Bunton Creek	\$7.5 million
		Total	\$11.0 million

Financing And Implementation

Bebee Road

Bebee Road is an important east-west corridor between IH-35 and SH 21. While the first segment (Priority \#1 - IH-35 to Bebee Road) needs to be done as soon as possible, the City has the chance to leverage their \$7.5 million participation in the first segment with the County to address the entire corridor of improvements (\$57.0 million). The City should enter into discussions with Hays County to identify roles and responsibilities and funding commitments to initiate the project. Initial planning could identify a more detailed phased implementation/construction schedule, as well as funding commitments.

There are not many opportunities for a TRZ in this area and even fewer options to pursue CAMPO or other state/federal funding sources. This will be a long-term project requiring initial funding commitments and then after the preliminary implementation plan and financing plan are in place, firm financial commitments from the City and County to complete the project.

CR 158/Opal Lane

The City should enter into a partnership with both TxDOT and Hays County. The City and County should create a corridor Transportation Reinvestment Zone (TRZ) to cover development costs for CR 158 and Opal Lane. During the development, it would be determined how to phase, both by segment and cross-section, the road construction. The City/County TRA opens opportunities to pursue a State Infrastructure Bank loan through TxDOT, sell local bonds through a local government corporation or seek a private sector infrastructure fund to design/ build/finance the project, all with repayment from the City/County TRZ.

Having the roadway project secured, TxDOT's role would be to design and fund the new IH-35/ Opal Lane interchange with 100\% TxDOT dollars. The Opal Lane interchange/bridge has been identified by TxDOT as part of their IH-35 Hays County Operational Analysis and the overall three-county IH-35 corridor improvement program. The City's plans/proposal to complete part or all of Opal Lane/CR 158 could help accelerate TxDOT's plans for both the bridge and proposed ramp improvements.

Goforth Road

The combined cost of the proposed Goforth Road projects (Priority \#3 and \#4) is \$11.0 million. These segments of Goforth road, Brent Blvd. to Kyle Parkway, provide a critical 2-way north-south route for traffic east of IH-35. As such, this project could address a number of the criteria for a CAMPO-funded STP-MM project, specifically, as a backage road, reliever to IH-35 and alternative modes of transportation with the proposed sidewalks.

The City should pursue a CAMPO application for this project. However, the City should be prepared to provide a minimum 20% local match and higher to 50% to score well. The City could fund 100% of the development costs, including environmental and engineering, and participate in a minimum of 20% in the balance of the project (right-of-way and construction).

$\int \begin{aligned} & \text { Policy } \\ & \text { Recommendations }\end{aligned}$

Policy Recommendations

Complete Streets Policy

A Complete Streets (CS) policy within Kyle is recommended in the Mobility Plan. Complete Streets infrastructure and policy are defined by the National Complete Streets Coalition:

Abstract

"Complete Streets are streets for everyone. They are designed and operated to enable safe access for all users. Pedestrians, bicyclists, motorists and transit riders of all ages and abilities must be able to safely move along and across a complete street. Creating complete streets means transportation agencies must change their approach to community roads. By adopting a Complete Streets policy, communities direct their transportation planners and engineers to routinely design and operate the entire right of way to enable safe access for all users, regardless of age, ability, or mode of transportation." (source: http://www.completestreets.org/complete-streets-fundamentals/)

CS policies are intended to impact all types of projects - maintenance, rehabilitation, new construction, major expansion, and new development. CS policies are also "context-sensitive," which reviews the role a road will serve within a community in relationship to the surrounding land uses and activity types, and that the road is designed to serve that role. Austin adopted a Complete Streets Policy in June 2014. The core intent of the policy is to "design, operate and maintain the community's streets and right-of-way so as to promote safe, comfortable and convenient access and travel for people of all ages and abilities." The City of Kyle is recommended to follow this same principal and apply the Complete Streets Policy on all applicable projects.

Policy Recommendations

Subdivision Ordinance

Another recommendation for the City of Kyle is to add a clause to its existing subdivision ordinance requiring subdivisions to comply with the Transportation Master Plan. This would aid subdivisions when planning access points to future corridors.

Grants Committee

The City should consider establishing an internal grants committee. The committee could include representatives from the Mayor's Office, Public Works, CIP, Finance, and Planning. There are a number of existing programs through CAMPO and TxDOT, and the possibility of additional programs depending on House Bill 20 and the current proposed federal surface transportation reauthorization bill (Surface Transportation Reauthorization and Reform Act of 201- STRR).

Each program has specific goals and objectives and criteria to rank and score project requests. To do better in competing for regional and state funding, the City needs a comprehensive approach to selecting projects (that would meet funding criteria) and then competing with an application that addresses the point criteria and maximizes the City's financial contribution.

APPENDICES

Community Engagement and Communications Plan

Public Involvement and Outreach

March 9, 2015 Public Meeting

Kyle Connected kicked off the Kyle Transportation Master Plan with a public workshop on March 9, 2015 at Kyle Public Library. The planning and engineering team had a brief PowerPoint presentation about the plan followed by a mapping exercise with citizens where they addressed problem areas and transportation goals for their community.

Outreach:

- Ad in the Hays Free Press and HaysFreePress.com
- Ad in Community Impact
- Press release issued to all regional media
- Facebook and Twitter ads
- Use of electronic message sign on Kyle city square
- Outreach to neighborhood groups
- Email alert to stakeholder list

Attendees:

- 56 attendees, not including city staff and elected officials

August 25, 2015 Public Meeting

Kyle Connected held an "update meeting" on August 25, 2015 at Wallace Middle School. The planning and engineering team showed a PowerPoint presentation about the plan so far, displayed exhibit boards about potential road improvements, and received public input via a mapping exercise and community survey.

Outreach:

- Ad in the Hays Free Press and HaysFreePress.com
- Ad in Community Impact and CommunityImpact.com
- Press release issued to all regional media
- Facebook and Twitter ads
- Use of electronic message sign on Kyle city square
- Outreach to neighborhood groups
- Email alert to stakeholder list

Attendees:

- 37 attendees, not including city staff and elected officials

February 11, 2016 Public Meeting

Kyle Connected held a final community meeting on February 11, 2016 at Fuentes Elementary School. The planning and engineering team displayed exhibits about the plan and various roadway improvements. They also received public input from comment forms at the meeting.

Outreach:

- Ad in the Hays Free Press and HaysFreePress.com
- Ad in Community Impact
- Press release issued to all regional media
- Facebook and Twitter ads
- Outreach to neighborhood groups
- Email alert to stakeholder list

Attendees:

- 27 attendees, not including city staff and elected officials

Community Survey

The LAN / Gap Strategies team had a survey available online and at the August 25 public meeting. Paper copies were available upon request.

Web and Social Media Outreach

Throughout the project, the LAN / Gap Strategies team, kept a project-specific website updated. Information about the plan, upcoming meetings, and virtual open houses for past meetings were available online.

Additionally, a Facebook page and Twitter account were kept up to date for the project. The accounts alerted citizens about the project, upcoming meetings, and transportation-related news stories and studies from around the region.

QUESTION 1

Where do you live?
(150)

QUESTION 3

QUESTION 5

Other than recreation, have you used any of the following methods to make at least one trip in the last 30 days?

QUESTION 7

QUESTION 10

Would you like to see rail as a transit option in Kyle?

- Yes
- No

Depends on the circumstances and the price

In Kyle, it is harder to move:

North-South
East-West
Don't know / Does not apply to me

QUESTION 12
Agree or disagree? Preservation of trees, and roads designed to reflect the City's "character" and heritage are important to me.

Question 13: Tell us: what is your major transportation concern...

The fact that your engineer put a road (Oak Grove) on the Halifax Ranch, owned by Kyle's only philanthropist, while building roads with public taxpayer for every developer in town. Doesn't sound fair to me. Keep the roads away from our Blanco River and other streams and off protected and environmentally sensitive lands. Developers need to pay for their own roads and infrastructure. We can no longer afford to do it for them.

Lack of north-south options for commuters other than I-35.

Why place a collector road through Historic Core area of Kyle? Would you place a collector road through Plum Creek?

Turning Scott Street into a collector road and connecting 150 to Scott street bringing all the Center Street traffic down into our quiet neighborhood. Would you send this type of traffic through Plum Creek? This neighborhood is why I moved to Kyle area 28 years ago.

Connecting Opal Lane to the new $\mathrm{IH}-35$ bridge. In past City road maps the community and City of Kyle Council members have placed that collector road farther south to Roland Lane because of the better road connection on the east side of IH-35. Though nowhere in the meetings could past City maps be found showing past city decisions. And, when Opal lane residents provided feedback to Kyleconnected.com during the first meeting, none of their concerns where addressed from the review of the second open meeting. How will the residents of Opal Lane and Scott Street be allowed to voice our concerns? Do we need to include our County Commissioner in future meetings?

The city of Kyle needs to have para-transit services for the disabled and Seniors and also fixed route buses for anyone not a senior or disable. As a disabled person I plead for this as an urgency. Roads need to be repaired for safety of the passengers and driver.

Expansion of back/rural roads that should be left alone. Focus on widening feeder roads and bridges across l-35.

Stoplight programming that changes with real-time conditions. Short stoplight times when the traffic is heavy doesn't make sense. Perhaps better communication with TxDOT.

Need a better way to get from area south of Kyle to the HEB/Kyle Parkway/Seton complex.

Must alleviate heavy congestion on Center Street.

Maintain and improve pavement on existing streets.

Loss of a small town feeling. Not interested in having my rural homestead converted into an urban setting

Lack of connectivity and walkability.

Road classifications not suited for current/future development.

Lack of sidewalks.

Not enough transportation alternatives, both in modes of transit and in routes.

Pedestrian safety, particularly on E FM 150 and in vicinity of schools and parks.

Connection of Bebee road to Kyle Crossing and addition of turning lane on Bebee.

Getting in and out of Austin - would like a rail... or at least a CapMetro Park \& Ride. I also do not want traffic cutting through my neighborhood, where I recently purchased a home.

Hodge-podge planning. Lack of connectivity. Lack of sidewalks. Lack of WIDE sidewalks. AASHTO non-compliance in design of 'amenities' (bike-lanes and roundabouts).

With as many people who commute in to Austin, it would be nice to see some rail options to Austin.

I would like to see more bike lanes and sidewalks to connect neighborhoods to schools (these could be off the roadways as hike/bike trails as well). Connecting neighborhoods to each other would be nice as well.

Poor roads in the East Triangle - Lehman/Goforth/Bunton

I'm concerned that Bunton is not being fixed all the way to Lehman High, also congestion around the school is terrible. Need a light in the area as soon as possible.

No ability to get to other major cities such as Austin and San Antonio. Affordability of public transportation

Poor road conditions and storm drainage. A major concern is the lack of a traffic signal at FM-1626/ Kohler Crossing.

Question 14: Tell us: are there any special problems with areas you want to note, or transportation efforts that work particularly well right now?

Fix the roads we currently have before you build any new ones. We can not afford Lone Star Rail - which was supposed to be finished by 2012 anyway. It was not. It's a failure.

Having transportation only 2 days a week is just not feasible for any city or town.

Widening of Hwy 150 near Hometown Kyle, great! Widening of road that the library is on, great!

There is a lack of handicapped parking spaces with 'landing zones' alongside in the downtown area.

Need traffic signal lights at the intersection of 2770 and 1626.
E. FM 150 is not suited for the current and future development. There are several single-family residences with no connectivity, pedestrian safety on FM 150 is degraded due to lack of sidewalks, bike lanes, and the speed limit is too high. Children cannot walk to school or friend's homes without driving. Access to public facilities such as parks are only safely accessible by vehicle.

Sunrise Drive and Sunrise Circle road expansions. This would be a bad idea as Sunrise Drive expansion would go right over the flood zone. If construction in this area, continues more run off will increase the flooding of homes in this area. It's currently a horse community that appreciates its dead-end setting.

Bebee/High should be turned into 3-lane road w/turning lane in the middle, and need to have sidewalks on both sides and bike lanes on both sides- kids walking/groups of adults on professional road bikes ride through on weekends. Do not connect roads in Sunrise Acres neighborhood- these are all dead end roads currently and will be extremely disruptive to the neighborhood. The widening of Bebee/High is about all our neighborhood can handle.

Bunton Road improvement needs more lanes. Unhappy that Bunton, Goforth and Lehman still not stated

No sidewalks on 150 East. Overall lack of sidewalks around the city on city roads also. CARTS service only runs twice per week.

Roundabouts are of great concern regarding school transportation.

Comments from Kyle Connected- Meeting 3 Feuntes Elementary

Feb. 11, 2016

1. I have lived in Kyle for 20 years. Todd Webster, Mayor ran for office on the promise of being opposed to any for of Truck Stop at Yarrington and I-35. I understand he has now gone back on his word and is trying to push the Truck Stop development even though the coming committee voted against it. I would like Todd to keep his word. No Truck Stop!
2. Concern on Heidenreich alignment @FM 50, current layout shows Roadway going between our hard corner which causes huge concern, since we are working w/ Kyle + Hays County on the Development and Commercial component. Also to extension of Grist Mill as it heads up to Goforth goes through our Kyle Estate MP and the alignment isn't what we discussed early on.
3. Glad Opal Ln is in long range planning! Please keep it as such!

Stakeholder Comments

August 25, 2015 Public Meeting - Comment \& Response

Anthem development is a concern because it is in Mountain City
Numerous corridors and development cut in and out of Kyle's jurisdiction, therefore coordination with neighboring cities is required to ensure a cohesive regional network. Anthem is an excellent example.

Do not connect Sunrise Drive because it is located in a floodplain and goes through property
The City prefers connecting local roads like Sunrise and Moonlite Meadows to major corridors to encourage development. The City should consider including traffic-calming installations when the connections are made. Exact road alignments will be determined in the future when funding and need is determined.

Don't connect Moonlite Meadows Path because it is located in a floodplain and goes through property Same response as above.

Connect Kohlers Crossing to Kyle Loop (W)
This connection was considered during the initial phase of the plan and it was removed because of the location of Barton Jr High School.

Do not propose the southwest Kyle Loop section
This section of the Kyle Loop follows the County's approved corridor for FM 150's relocation.

Smooth and extend CR 158 from Scott Street to SH 21
LaSalle MUD, in the jurisdiction of the City of San Marcos, should be encouraged to provide east-west connectivity to supplement the larger roadways of FM 150 and Yarrington Road.

Connect Goforth Road from Bebee Road to Bunton Lane
This was determined to be a feasible connection; therefore it was added to the proposed projects.

Residents south of Center Street want to preserve the rural lifestyle and do not want to realign Scott Street or build a bridge at Opal Lane
The improvements can be contingent on development happening in the area, but the projects should remain on the plan (if at a low priority) so that when development does occur, the network will support it.

Suggest using shared lane markings (SLM) instead of bike lanes
Shared lane markings is an optional treatment on existing corridors where widening is not feasible, therefore it is suggested in the plan.

Bike lanes under poor condition exist on Spring Branch Drive and Dacy Lane
It is not recommended to construct $1 / 2$ asphalt bike lanes, this creates an uneven surface for riders.

Connect Apricot Lane to IH-35
This is not feasible due to the railroad crossing and Plum Creek.

Check connection alignment of E Opal Lane to Roland Lane in 2005 Kyle TMP
The 2005 TMP was checked and this connection was not part of the proposed network.

Realign W Kyle Loop to avoid six homes east of Anthem development
The alignment was shifted to avoid the homes. Exact road alignments will be determined in the future and tasks like avoiding residential homes and acquiring additional ROW will be part of the process.

A traffic signal at Grist Mill Road \& SH 21 may be needed
This was determined to be a feasible assumption; therefore it was added to the proposed projects even though it is not in Kyle's jurisdiction.

Remove east Bunton Lane section because it is no longer needed
Existing roads bypassed by realigned corridors should still be shown on the map, but as local in terms of classification.

Bebee/High should be classified as C3U w/ bike lanes because cyclists use this road
This was determined to be a feasible request; therefore bike lanes are proposed along Bebee/High.
Remove both dog legs at Opal Lane
This and other proposed routes were adjusted to create a smoother transition.
Remove N Lime Kiln
This is not feasible because this area is expected to have development, so new collectors are needed to distribute traffic and provide access.

Rebuild the existing Centex Road section
This was determined to be a feasible request; therefore the existing section of Centex Road is proposed to be rebuilt.

Do not include a roundabout at Kyle Loop and Old Stagecoach Road
A roundabout is recommended because it is a skewed intersection; depending on the final alignment of the FM 150 bypass, a traditional signalized intersection might be the best option.

Install a signal instead of a roundabout at FM 150 \& Kyle Loop
A roundabout is recommended because it is a skewed intersection.

Check Hays County Plan B for Dacy Lane's alignment by Chapa Middle School
Corridors shown are conceptual and drawn for connectivity; when engineering plans are developed for roadway construction, minor shifts of alignment and minor changes in right-of-way widths may be necessary to avoid existing properties or infrastructure.

There is a concern about the oak trees along Opal Lane, by Scott Street
Same response as above.
Instead of connecting Opal Lane to CR 158, continue CR 158 west to Cypress Road
This is not easily feasible due to the existing roadways.
FM 1626 \& Kohlers Crossing signal is highly supported
The project prioritization reflects this observation.

Remove Kyle Crossing

This is not feasible because the area expected to have substantial development, so new collectors are needed to distribute traffic and provide access.

Remove NR2, north of Kyle Crossing
Same response as above.

A roundabout at FM 1626 \& Dorman Street is suggested
A roundabout may not be the best solution for a T intersection close to the railroad.

Remove Burleson (Cromwell)
This is not feasible because the area expected to have substantial development, so new collectors are needed to distribute traffic and provide access.

A roundabout at Burleson Street \& Kyle Marketplace Frontage Road is suggested
A roundabout may not be the best solution for a T intersection next to the railroad.

It is suggested showing FM 110
This is a good idea so FM 110 was added to the maps.

Kyle Master Transportation Plan - 2045 Road Classification

Kyle Master Transportation Plan-2045 Road Classification

Kyle Master Transportation Plan - 2045 Road Classification

B-7

Kyle Master Transportation Plan - 2045 Road Classification

Kyle Master Transportation Plan - 2045 Proposed Projects

B-10

B-11

B-14

Travel Demand Modeling Memorandum

Kyle Transportation Plan Travel Model Memorandum

Introduction

This memorandum, developed by Kimley-Horn and Associates, Inc., describes the model changes instituted for the proposed Transportation Master Plan for the City of Kyle. Several proposed roadway projects were suggested as part of the recommendations for the City's Transportation Plan. The purpose of this memo is to provide the City with documentation on the methodology used in analyzing the outcomes of the recommendations on the transportation system.

Hays County and the City of Kyle are part of the Capital Area Metropolitan Planning Organization (CAMPO), based in Austin.CAMPO maintains a travel demand model for the purposes of preparing their long range transportation plan. The model is useful in analyzing impacts to the regional transportation network. The model can provide reasonable estimates on the number of lanes required on a given roadway or the need for a new roadway and is best suited to providing comparison between different land use and roadway alternatives. With the use of the travel demand model, planners and engineers are able to estimate current and future traffic demands. To aid in the development of the Transportation Plan, the CAMPO travel demand model was used to analyze the future plan.

CAMPO Planning Model

The CAMPO travel demand model is composed of a series of mathematical models that simulate travel on the transportation network. The CAMPO model incorporates the traditional four-step modeling process with the primary steps as follows:

- Trip Generation -the number of trips produced and attracted to a destination or zone
- Trip Distribution -the estimation of the number or origins and destinations made between zones
- Mode Choice - how the trips will be divided across modes of travel (car, transit, nonmotorized travel)
- Traffic Assignment - which path the trip will take between the origin and destination

Traffic Analysis Zones

Traffic analysis zones (TAZ) are one of two major inputs to a travel demand model, the other being the roadway network. TAZ's are geographic areas dividing the region into smaller areas of similar land uses or activities. The areas formed by the boundaries they create represent the origins and destinations of travel activity within the TAZ. Each zone's socioeconomic data is aggregated to a single point known as a centroid. The data is loaded from the centroid to the transportation network by centroid connectors. Centroid connectors represent the local roads or major driveways that connect each TAZ to the major road network surrounding it, but do not necessarily depict specific facilities. TAZ's serve as the input for all socioeconomic data to the model, therefore it's crucial the demographics are as accurate as possible to achieve the best results.

Demographic Data

The demographics for Kyle were reviewed and modified, based on information received from the City about new subdivisions and other planned projects. A significant amount of development is anticipated for the area, including a combination of residential, retail, and office developments. The proposed development was compared with the forecasted demographics in the CAMPO travel demand model. Based on the planned development projects, demographic updates were made to evaluate the full impact on the roadway network.

Demographic Comparison (2010 CAMPO)			
	Population	Households	Employment
City of Kyle	28,692	9,070	4,466
ETJ	43,988	13,475	5,054
Total	$\mathbf{7 2 , 6 8 0}$	$\mathbf{2 2 , 5 4 5}$	$\mathbf{9 , 5 2 0}$

Demographic Comparison (2040 CAMPO)			
	Population	Households	Employment
City of Kyle	64,157	19,810	45,036
ETJ	140,230	43,374	50,026
Total	$\mathbf{2 0 4 , 3 8 7}$	$\mathbf{6 3 , 1 8 4}$	$\mathbf{9 5 , 0 6 2}$

Modeling Process for Kyle

The following details the steps taken to use the CAMPO model for the Kyle Transportation Plan.
Data Collection

- Obtained the City of Kyle city limits and ETJ boundary file.
- Obtained demographics for the City of Kyle.

Network and Data Development

- Cleaned model linework making geographic edits as appropriate within the boundary of the study area.
- Updated demographic data
- A base model run was completed to obtain existing volumes.
- The 2040 network was updated to incorporate Kyle's working Transportation Master Plan and comments made by City of Kyle staff.
- A future model run incorporating the Transportation Master Plan recommendations was completed to obtain future roadway volumes.

2010 Volumes - $-05,001-40,000$ $-10,000$ $40,001-60,000$	Streets Streams Lakes	Kyle City Limits Kyle ETJ		2010 CAMPO Model Volumes		
-60,001-71,393		Other Cities	11/6/2015	$\begin{aligned} & 00.250 .5 \\ & \vdash+1 \\ & \mapsto \end{aligned} 1 \text { Miles }$		Q Kimley)>Horn

$\begin{array}{ll}2040 \text { Volumes } & \text { 25,001-40,000 } \\ -0-10,000 & 40,001-60,000\end{array}$	Streets Streams Lakes	Kyle City Limits Kyle ETJ		2040 CAMPO Model Volumes		
		Other Cities	7/7/2015	$\begin{array}{ll} 0 & 0.250 .5 \\ \vdash \end{array}$	NORTH	Q Kimley)> Horn

$\mathbf{2 0 4 0}$ LOS	\square	Streets	Kyle City Limits
$=\mathrm{A} / \mathrm{B} / \mathrm{C}$	\square	Streams	Kyle ETJ
D	\square	\square	Lakes
E/F			Other Cities

2040 CAMPO Model Level of Service

$\begin{array}{ll}0 \quad 0.250 .5 \\ 1 & 1 \\ 1 & 1\end{array}$ 1 Miles

NORTH
Q Kimley»Horn

2010-2040 Employment Change	501-1,000	3,001-4,000	2040 Model		CAMPO Model 2010-2040 Employment Growth		
0-250							
251-500	2,001-3,000	5,001-13,428	Streams	7/7/2015	$\begin{array}{lll} 00.250 .5 \\ \longmapsto 1,1,1 \end{array}$	NORTH	Kimley)>> Horn

[^1]
Complete Streets Typical Sections

City of Kyle Transportation Master Plan - 2015 Update					
Proposed Typical Sections					
Classifications	Typical Section	ROW	Description	Cost Estimate (per Mile)*	
				w/o ROW Cost	w/ ROW Cost
Multi-Use Path	MUP	24^{\prime}	12' bi-directional multi-use path	\$900,000	\$3,400,000
Local	L2U	60^{\prime}	Basic 2-lane section for direct lot access	\$5,500,000	\$11,800,000
Local/ Collector / Major \& Minor Arterial	R2U	60'	Existing sections without sidewalks or curb/gutter. Not permitted for new construction within Kyle	\$3,600,000	\$7,400,000
Collector	C2U	60'	Wider section for commercial areas; bike and parking are optional	\$6,100,000	\$12,400,000
Collector	C2U - Bike or Parking	60^{\prime}	Wider section for residential areas; two striped outside lanes for bikes or parking	\$6,200,000	\$12,500,000
Collector	C3U	60^{\prime}	3-lane section with two-way left-turn lane	\$6,300,000	\$12,600,000
Collector	C4U	70'	Basic 4-lane collector section	\$6,700,000	\$14,100,000
Collector	C4U - Bike or Parking	80'	Two striped outside lanes for bikes or parking	\$7,700,000	\$16,100,000
Collector \& Minor Arterial	C4D	80'	Basic 4-lane arterial section	\$7,400,000	\$15,800,000
Collector \& Minor Arterial	C4D - Bike or Parking	90'	Two striped outside lanes for bikes or parking	\$8,500,000	\$18,000,000
Collector \& Minor Arterial	C5U	80'	5-lane section with two-way left-turn lane	\$7,600,000	\$16,000,000
Minor Arterial	P4D	105'	Basic 4-lane arterial section for high speed roads ($>40 \mathrm{mph}$)	\$8,700,000	\$19,800,000
Minor Arterial	P4D - Bike	110'	12' lanes, with 12' multi-use path for Hike and Bike Trail Segments	\$9,000,000	\$20,600,000
Minor \& Major Arterial	P6D	130'	Basic 6-lane arterial section with 12' lanes	\$10,300,000	\$24,000,000
Minor \& Major Arterial	P8D	150'	Basic 8-lane arterial section with 12' lanes	\$11,800,000	\$27,600,000

*Cost estimates include 10\% Construction Oversight, 10\% Contingency, and 20\% Pre-Construction costs

MUP (Cost/Mile)					
Item No, Descrip Code	Description	Unit	Est	Avg Unit Cost	COST
1006002	PREPARING ROW	STA	24.0	\$2,500.00	\$60,000.00
1106001	EXCAVATION (ROADWAY)	CY	3,520.0	\$10.00	\$35,200.00
1326003	EMBANKMENT (FINAL) (ORD CONT) (TY B)	CY	528.0	\$10.00	\$5,280.00
1606003	FURNISHING AND PLACING TOPSOIL (4")	SY	3,520.0	\$1.50	\$5,280.00
1626002	BLOCK SODDING	SY	352.0	\$3.00	\$1,056.00
1686001	VEGETATIVE WATERING	MG	250.0	\$12.00	\$3,000.00
1922020	PLANT MATERIAL (1 GAL) (TREE)	EA	176.0	\$8.00	\$1,408.00
2602001	LIME (HYDRATED LIME(DRY))	TON	126.7	\$148.72	\$18,842.82
2602006	LIME TRT (EXST MATL) (6")	SY	7,040.0	\$1.68	\$11,827.20
2762224	CEM TRT (PLNT MX) (CL N) (TY E) (GR 4) (6")	SY	7,040.0	\$8.30	\$58,432.00
3416008	D-GR HMA TY-B PG 64-22 (7.5 IN)	TON	2,904.0	\$65.00	\$188,760.00
3416047	D-GR HMA TY-D SAC-A PG 76-22 (3 IN)	TON	1,161.6	\$123.00	\$142,876.80
5006001	MOBILIZATION	LS	1.0	-	\$61,308.28
PAVEMENT MARKINGS AND SIGNS		MI	1.0	\$10,000.00	\$10,000.00
UTILITIES		MI	1.0	\$50,000.00	\$50,000.00
11222037	TEMPORARY SEDIMENT CONTROL FENCE INSTL	LF	10,560.0	\$2.00	\$21,120.00
				TOTAL	\$674,392.00
Pre-Construction				20\%	\$134,878.40
Construction Oversight				10\%	\$67,439.20
Contingency				10\%	\$67,439.20
				TOTAL	\$900,000
				ROW TOTAL	\$2,500,000

L2U (Cost/Mile)					
Item No, Descrip Code	Description	Unit	Est	Avg Unit Cost	COST
1006002	PREPARING ROW	STA	60.0	\$2,500.00	\$150,000.00
1106001	EXCAVATION (ROADWAY)	CY	7,626.7	\$10.00	\$76,266.67
1326003	EMBANKMENT (FINAL) (ORD CONT) (TY B)	CY	1,144.0	\$10.00	\$11,440.00
1606003	FURNISHING AND PLACING TOPSOIL (4")	SY	7,626.7	\$1.50	\$11,440.00
1626002	BLOCK SODDING	SY	762.7	\$3.00	\$2,288.00
1686001	VEGETATIVE WATERING	MG	250.0	\$12.00	\$3,000.00
1922020	PLANT MATERIAL (1 GAL) (TREE)	EA	176.0	\$8.00	\$1,408.00
2602001	LIME (HYDRATED LIME(DRY))	TON	274.6	\$148.72	\$40,838.51
2602006	LIME TRT (EXST MATL) (6")	SY	15,253.3	\$1.68	\$25,625.60
2762224	CEM TRT (PLNT MX) (CL N) (TY E) (GR 4) (6")	SY	15,253.3	\$8.30	\$126,602.67
3416008	D-GR HMA TY-B PG 64-22 (7.5 IN)	TON	6,292.0	\$65.00	\$408,980.00
3416047	D-GR HMA TY-D SAC-A PG 76-22 (3 IN)	TON	2,516.8	\$123.00	\$309,566.40
5006001	MOBILIZATION	LS	1.0	-	\$358,832.78
5022125	BARRICADES, SIGNS AND TRAFFIC HANDLING	EA	2.0	\$1,500.00	\$3,000.00
5296005	CONC CURB (MONO) (TY II)	LF	10,560.0	\$6.00	\$63,360.00
5306004	DRIVEWAYS (CONC)	SY	288.0	\$64.00	\$18,432.00
5316003	CONC SIDEWALKS (6")	SY	7,040.0	\$52.00	\$366,080.00
	DRAINAGE	MI	1.0	\$1,500,000.00	\$1,500,000.00
PAV	MENT MARKINGS AND SIGNS	MI	1.0	\$40,000.00	\$40,000.00
	UTILITIES	MI	1.0	\$400,000.00	\$400,000.00
	SW3P	MI	1.0	\$30,000.00	\$30,000.00
				TOTAL	\$3,947,161.00
	Pre-Construction			20\%	\$789,432.20
	onstruction Oversight			10\%	\$394,716.10
	Contingency			10\%	\$394,716.10
				TOTAL	\$5,500,000
				ROW TOTAL	\$6,300,000

L21

R2U (Cost/Mile)					
Item No, Descrip Code	Description	Unit	Est	Avg Unit Cost	COST
1006002	PREPARING ROW	STA	60.0	\$2,500.00	\$150,000.00
1056005	REMOVING STAB BASE AND ASPH PAV (2")	SY	14,080.0	\$10.00	\$140,800.00
1106001	EXCAVATION (ROADWAY)	CY	7,040.0	\$10.00	\$70,400.00
1326003	EMBANKMENT (FINAL) (ORD CONT) (TY B)	CY	1,056.0	\$10.00	\$10,560.00
1606003	FURNISHING AND PLACING TOPSOIL (4")	SY	7,040.0	\$1.50	\$10,560.00
1626002	BLOCK SODDING	SY	704.0	\$3.00	\$2,112.00
1686001	VEGETATIVE WATERING	MG	250.0	\$12.00	\$3,000.00
1922020	PLANT MATERIAL (1 GAL) (TREE)	EA	176.0	\$8.00	\$1,408.00
2602001	LIME (HYDRATED LIME(DRY))	TON	253.4	\$148.72	\$37,685.65
2602006	LIME TRT (EXST MATL) (6")	SY	14,080.0	\$1.68	\$23,654.40
2762224	CEM TRT (PLNT MX) (CL N) (TY E) (GR 4) (6")	SY	14,080.0	\$8.30	\$116,864.00
3416008	D-GR HMA TY-B PG 64-22 (7.5 IN)	TON	5,808.0	\$65.00	\$377,520.00
3416047	D-GR HMA TY-D SAC-A PG 76-22 (3 IN)	TON	2,323.2	\$123.00	\$285,753.60
5006001	MOBILIZATION	LS	1.0	-	\$233,210.96
5296005	CONC CURB (MONO) (TY II)	LF	10,560.0	\$6.00	\$63,360.00
5306004	DRIVEWAYS (CONC)	SY	288.0	\$64.00	\$18,432.00
	DRAINAGE	MI	1.0	\$500,000.00	\$500,000.00
	TRAFFIC CONTROL	MI	1.0	\$50,000.00	\$50,000.00
PAV	ENT MARKINGS AND SIGNS	MI	1.0	\$40,000.00	\$40,000.00
	UTILITIES	MI	1.0	\$400,000.00	\$400,000.00
	SW3P	MI	1.0	\$30,000.00	\$30,000.00
				TOTAL	\$2,565,321.00
	Pre-Construction			20\%	\$513,064.20
	nstruction Oversight			10\%	\$256,532.10
	Contingency			10\%	\$256,532.10
				TOTAL	\$3,600,000
				ROW TOTAL	\$3,800,000

221

C2U (Cost/Mile)					
Item No, Descrip Code	Description	Unit	Est	Avg Unit Cost	COST
1006002	PREPARING ROW	STA	60.0	\$2,500.00	\$150,000.00
1106001	EXCAVATION (ROADWAY)	CY	10,560.0	\$10.00	\$105,600.00
1326003	EMBANKMENT (FINAL) (ORD CONT) (TY B)	CY	1,584.0	\$10.00	\$15,840.00
1606003	FURNISHING AND PLACING TOPSOIL (4")	SY	10,560.0	\$1.50	\$15,840.00
1626002	BLOCK SODDING	SY	1,056.0	\$3.00	\$3,168.00
1686001	VEGETATIVE WATERING	MG	250.0	\$12.00	\$3,000.00
1922020	PLANT MATERIAL (1 GAL) (TREE)	EA	176.0	\$8.00	\$1,408.00
2602001	LIME (HYDRATED LIME(DRY))	TON	380.2	\$148.72	\$56,543.34
2602006	LIME TRT (EXST MATL) (6")	SY	21,120.0	\$1.68	\$35,481.60
2762224	CEM TRT (PLNT MX) (CL N) (TY E) (GR 4) (6")	SY	21,120.0	\$8.30	\$175,296.00
3416008	D-GR HMA TY-B PG 64-22 (7.5 IN)	TON	8,712.0	\$65.00	\$566,280.00
3416047	D-GR HMA TY-D SAC-A PG 76-22 (3 IN)	TON	3,484.8	\$123.00	\$428,630.40
5006001	MOBILIZATION	LS	1.0	-	\$397,795.93
5022125	BARRICADES, SIGNS AND TRAFFIC HANDLING	EA	2.0	\$1,500.00	\$3,000.00
5296005	CONC CURB (MONO) (TY II)	LF	10,560.0	\$6.00	\$63,360.00
5306004	DRIVEWAYS (CONC)	SY	288.0	\$64.00	\$18,432.00
5316003	CONC SIDEWALKS (6")	SY	7,040.0	\$52.00	\$366,080.00
	DRAINAGE	MI	1.0	\$1,500,000.00	\$1,500,000.00
PAV	IENT MARKINGS AND SIGNS	MI	1.0	\$40,000.00	\$40,000.00
	UTILITIES	MI	1.0	\$400,000.00	\$400,000.00
	SW3P	MI	1.0	\$30,000.00	\$30,000.00
				TOTAL	\$4,375,756.00
	Pre-Construction			20\%	\$875,151.20
	onstruction Oversight			10\%	\$437,575.60
	Contingency			10\%	\$437,575.60
				TOTAL	\$6,100,000
				ROW TOTAL	\$6,300,000

C2U (B/P) (Cost/Mile)					
Item No, Descrip Code	Description	Unit	Est	Avg Unit Cost	COST
1006002	PREPARING ROW	STA	60.0	\$2,500.00	\$150,000.00
1106001	EXCAVATION (ROADWAY)	CY	10,560.0	\$10.00	\$105,600.00
1326003	EMBANKMENT (FINAL) (ORD CONT) (TY B)	CY	1,584.0	\$10.00	\$15,840.00
1606003	FURNISHING AND PLACING TOPSOIL (4")	SY	10,560.0	\$1.50	\$15,840.00
1626002	BLOCK SODDING	SY	1,056.0	\$3.00	\$3,168.00
1686001	VEGETATIVE WATERING	MG	250.0	\$12.00	\$3,000.00
1922020	PLANT MATERIAL (1 GAL) (TREE)	EA	176.0	\$8.00	\$1,408.00
2602001	LIME (HYDRATED LIME(DRY))	TON	380.2	\$148.72	\$56,543.34
2602006	LIME TRT (EXST MATL) (6")	SY	21,120.0	\$1.68	\$35,481.60
2762224	CEM TRT (PLNT MX) (CL N) (TY E) (GR 4) (6")	SY	21,120.0	\$8.30	\$175,296.00
3416008	D-GR HMA TY-B PG 64-22 (7.5 IN)	TON	8,712.0	\$65.00	\$566,280.00
3416047	D-GR HMA TY-D SAC-A PG 76-22 (3 IN)	TON	3,484.8	\$123.00	\$428,630.40
5006001	MOBILIZATION	LS	1.0	-	\$399,795.93
5022125	BARRICADES, SIGNS AND TRAFFIC HANDLING	EA	2.0	\$1,500.00	\$3,000.00
5296005	CONC CURB (MONO) (TY II)	LF	10,560.0	\$6.00	\$63,360.00
5306004	DRIVEWAYS (CONC)	SY	288.0	\$64.00	\$18,432.00
5316003	CONC SIDEWALKS (6")	SY	7,040.0	\$52.00	\$366,080.00
	DRAINAGE	MI	1.0	\$1,500,000.00	\$1,500,000.00
PAV	ENT MARKINGS AND SIGNS	MI	1.0	\$60,000.00	\$60,000.00
	UTILITIES	MI	1.0	\$400,000.00	\$400,000.00
	SW3P	MI	1.0	\$30,000.00	\$30,000.00
				TOTAL	\$4,397,756.00
	Pre-Construction			20\%	\$879,551.20
	onstruction Oversight			10\%	\$439,775.60
	Contingency			10\%	\$439,775.60
				TOTAL	\$6,200,000
				ROW TOTAL	\$6,300,000

coll ($8 / 21$

C3U (Cost/Mile)					
Item No, Descrip Code	Description	Unit	Est	Avg Unit Cost	COST
1006002	PREPARING ROW	STA	60.0	\$2,500.00	\$150,000.00
1106001	EXCAVATION (ROADWAY)	CY	11,146.7	\$10.00	\$111,466.67
1326003	EMBANKMENT (FINAL) (ORD CONT) (TY B)	CY	1,672.0	\$10.00	\$16,720.00
1606003	FURNISHING AND PLACING TOPSOIL (4")	SY	11,146.7	\$1.50	\$16,720.00
1626002	BLOCK SODDING	SY	1,114.7	\$3.00	\$3,344.00
1686001	VEGETATIVE WATERING	MG	250.0	\$12.00	\$3,000.00
1922020	PLANT MATERIAL (1 GAL) (TREE)	EA	176.0	\$8.00	\$1,408.00
2602001	LIME (HYDRATED LIME(DRY))	TON	401.3	\$148.72	\$59,681.34
2602006	LIME TRT (EXST MATL) (6")	SY	22,293.3	\$1.68	\$37,452.80
2762224	CEM TRT (PLNT MX) (CL N) (TY E) (GR 4) (6")	SY	22,293.3	\$8.30	\$185,034.67
3416008	D-GR HMA TY-B PG 64-22 (7.5 IN)	TON	9,196.0	\$65.00	\$597,740.00
3416047	D-GR HMA TY-D SAC-A PG 76-22 (3 IN)	TON	3,678.4	\$123.00	\$452,443.20
5006001	MOBILIZATION	LS	1.0	-	\$408,588.27
5022125	BARRICADES, SIGNS AND TRAFFIC HANDLING	EA	2.0	\$1,500.00	\$3,000.00
5296005	CONC CURB (MONO) (TY II)	LF	10,560.0	\$6.00	\$63,360.00
5306004	DRIVEWAYS (CONC)	SY	288.0	\$64.00	\$18,432.00
5316003	CONC SIDEWALKS (6")	SY	7,040.0	\$52.00	\$366,080.00
	DRAINAGE	MI	1.0	\$1,500,000.00	\$1,500,000.00
PAV	IENT MARKINGS AND SIGNS	MI	1.0	\$70,000.00	\$70,000.00
	UTILITIES	MI	1.0	\$400,000.00	\$400,000.00
	SW3P	MI	1.0	\$30,000.00	\$30,000.00
				TOTAL	\$4,494,471.00
	Pre-Construction			20\%	\$898,894.20
	onstruction Oversight			10\%	\$449,447.10
	Contingency			10\%	\$449,447.10
				TOTAL	\$6,300,000
				ROW TOTAL	\$6,300,000

C4U (Cost/Mile)					
Item No, Descrip Code	Description	Unit	Est	Avg Unit Cost	COST
1006002	PREPARING ROW	STA	70.0	\$2,500.00	\$175,000.00
1106001	EXCAVATION (ROADWAY)	CY	12,906.7	\$10.00	\$129,066.67
1326003	EMBANKMENT (FINAL) (ORD CONT) (TY B)	CY	1,936.0	\$10.00	\$19,360.00
1606003	FURNISHING AND PLACING TOPSOIL (4")	SY	12,906.7	\$1.50	\$19,360.00
1626002	BLOCK SODDING	SY	1,290.7	\$3.00	\$3,872.00
1686001	VEGETATIVE WATERING	MG	250.0	\$12.00	\$3,000.00
1922020	PLANT MATERIAL (1 GAL) (TREE)	EA	176.0	\$8.00	\$1,408.00
2602001	LIME (HYDRATED LIME(DRY))	TON	464.6	\$148.72	\$69,095.31
2602006	LIME TRT (EXST MATL) (6")	SY	25,813.3	\$1.68	\$43,366.40
2762224	CEM TRT (PLNT MX) (CL N) (TY E) (GR 4) (6")	SY	25,813.3	\$8.30	\$214,250.67
3416008	D-GR HMA TY-B PG 64-22 (7.5 IN)	TON	10,648.0	\$65.00	\$692,120.00
3416047	D-GR HMA TY-D SAC-A PG 76-22 (3 IN)	TON	4,259.2	\$123.00	\$523,881.60
5006001	MOBILIZATION	LS	1.0	-	\$433,465.26
5022125	BARRICADES, SIGNS AND TRAFFIC HANDLING	EA	2.0	\$1,500.00	\$3,000.00
5296005	CONC CURB (MONO) (TY II)	LF	10,560.0	\$6.00	\$63,360.00
5306004	DRIVEWAYS (CONC)	SY	288.0	\$64.00	\$18,432.00
5316003	CONC SIDEWALKS (6")	SY	7,040.0	\$52.00	\$366,080.00
	DRAINAGE	MI	1.0	\$1,500,000.00	\$1,500,000.00
PAV	MENT MARKINGS AND SIGNS	MI	1.0	\$60,000.00	\$60,000.00
	UTILITIES	MI	1.0	\$400,000.00	\$400,000.00
	SW3P	MI	1.0	\$30,000.00	\$30,000.00
				TOTAL	\$4,768,118.00
	Pre-Construction			20\%	\$953,623.60
	onstruction Oversight			10\%	\$476,811.80
	Contingency			10\%	\$476,811.80
				TOTAL	\$6,700,000
				ROW TOTAL	\$7,400,000

c.ll

C4U (B/P) (Cost/Mile)					
Item No, Descrip Code	Description	Unit	Est	Avg Unit Cost	COST
1006002	PREPARING ROW	STA	80.0	\$2,500.00	\$200,000.00
1106001	EXCAVATION (ROADWAY)	CY	17,600.0	\$10.00	\$176,000.00
1326003	EMBANKMENT (FINAL) (ORD CONT) (TY B)	CY	2,640.0	\$10.00	\$26,400.00
1606003	FURNISHING AND PLACING TOPSOIL (4")	SY	17,600.0	\$1.50	\$26,400.00
1626002	BLOCK SODDING	SY	1,760.0	\$3.00	\$5,280.00
1686001	VEGETATIVE WATERING	MG	250.0	\$12.00	\$3,000.00
1922020	PLANT MATERIAL (1 GAL) (TREE)	EA	176.0	\$8.00	\$1,408.00
2602001	LIME (HYDRATED LIME(DRY))	TON	633.6	\$148.72	\$94,228.99
2602006	LIME TRT (EXST MATL) (6")	SY	35,200.0	\$1.68	\$59,136.00
2762224	CEM TRT (PLNT MX) (CL N) (TY E) (GR 4) (6")	SY	35,200.0	\$8.30	\$292,160.00
3416008	D-GR HMA TY-B PG 64-22 (7.5 IN)	TON	14,520.0	\$65.00	\$943,800.00
3416047	D-GR HMA TY-D SAC-A PG 76-22 (3 IN)	TON	5,808.0	\$123.00	\$714,384.00
5006001	MOBILIZATION	LS	1.0	-	\$500,306.90
5022125	BARRICADES, SIGNS AND TRAFFIC HANDLING	EA	2.0	\$1,500.00	\$3,000.00
5296005	CONC CURB (MONO) (TY II)	LF	10,560.0	\$6.00	\$63,360.00
5306004	DRIVEWAYS (CONC)	SY	288.0	\$64.00	\$18,432.00
5316003	CONC SIDEWALKS (6")	SY	7,040.0	\$52.00	\$366,080.00
	DRAINAGE	MI	1.0	\$1,500,000.00	\$1,500,000.00
PAV	IENT MARKINGS AND SIGNS	MI	1.0	\$80,000.00	\$80,000.00
	UTILITIES	MI	1.0	\$400,000.00	\$400,000.00
	SW3P	MI	1.0	\$30,000.00	\$30,000.00
				TOTAL	\$5,503,376.00
	Pre-Construction			20\%	\$1,100,675.20
	onstruction Oversight			10\%	\$550,337.60
	Contingency			10\%	\$550,337.60
				TOTAL	\$7,700,000
				ROW TOTAL	\$8,400,000

C.11 (B/P)

C4D (Cost/Mile)					
Item No, Descrip Code	Description	Unit	Est	Avg Unit Cost	COST
1006002	PREPARING ROW	STA	80.0	\$2,500.00	\$200,000.00
1106001	EXCAVATION (ROADWAY)	CY	16,426.7	\$10.00	\$164,266.67
1326003	EMBANKMENT (FINAL) (ORD CONT) (TY B)	CY	2,464.0	\$10.00	\$24,640.00
1606003	FURNISHING AND PLACING TOPSOIL (4")	SY	16,426.7	\$1.50	\$24,640.00
1626002	BLOCK SODDING	SY	1,642.7	\$3.00	\$4,928.00
1686001	VEGETATIVE WATERING	MG	250.0	\$12.00	\$3,000.00
1922020	PLANT MATERIAL (1 GAL) (TREE)	EA	176.0	\$8.00	\$1,408.00
2602001	LIME (HYDRATED LIME(DRY))	TON	591.4	\$148.72	\$87,953.01
2602006	LIME TRT (EXST MATL) (6")	SY	32,853.3	\$1.68	\$55,193.60
2762224	CEM TRT (PLNT MX) (CL N) (TY E) (GR 4) (6")	SY	32,853.3	\$8.30	\$272,682.67
3416008	D-GR HMA TY-B PG 64-22 (7.5 IN)	TON	13,552.0	\$65.00	\$880,880.00
3416047	D-GR HMA TY-D SAC-A PG 76-22 (3 IN)	TON	5,420.8	\$123.00	\$666,758.40
5006001	MOBILIZATION	LS	1.0	-	\$482,722.23
5022125	BARRICADES, SIGNS AND TRAFFIC HANDLING	EA	2.0	\$1,500.00	\$3,000.00
5296005	CONC CURB (MONO) (TY II)	LF	10,560.0	\$6.00	\$63,360.00
5306004	DRIVEWAYS (CONC)	SY	288.0	\$64.00	\$18,432.00
5316003	CONC SIDEWALKS (6")	SY	7,040.0	\$52.00	\$366,080.00
	DRAINAGE	MI	1.0	\$1,500,000.00	\$1,500,000.00
PAV	MENT MARKINGS AND SIGNS	MI	1.0	\$60,000.00	\$60,000.00
	UTILITIES	MI	1.0	\$400,000.00	\$400,000.00
	SW3P	MI	1.0	\$30,000.00	\$30,000.00
				TOTAL	\$5,309,945.00
	Pre-Construction			20\%	\$1,061,989.00
	onstruction Oversight			10\%	\$530,994.50
	Contingency			10\%	\$530,994.50
				TOTAL	\$7,400,000
				ROW TOTAL	\$8,400,000

C4D (B/P) (Cost/Mile)					
Item No, Descrip Code	Description	Unit	Est	Avg Unit Cost	COST
1006002	PREPARING ROW	STA	90.0	\$2,500.00	\$225,000.00
1106001	EXCAVATION (ROADWAY)	CY	21,120.0	\$10.00	\$211,200.00
1326003	EMBANKMENT (FINAL) (ORD CONT) (TY B)	CY	3,168.0	\$10.00	\$31,680.00
1606003	FURNISHING AND PLACING TOPSOIL (4")	SY	21,120.0	\$1.50	\$31,680.00
1626002	BLOCK SODDING	SY	2,112.0	\$3.00	\$6,336.00
1686001	VEGETATIVE WATERING	MG	250.0	\$12.00	\$3,000.00
1922020	PLANT MATERIAL (1 GAL) (TREE)	EA	176.0	\$8.00	\$1,408.00
2602001	LIME (HYDRATED LIME(DRY))	TON	760.3	\$148.72	\$113,071.82
2602006	LIME TRT (EXST MATL) (6")	SY	42,240.0	\$1.68	\$70,963.20
2762224	CEM TRT (PLNT MX) (CL N) (TY E) (GR 4) (6")	SY	42,240.0	\$8.30	\$350,592.00
3416008	D-GR HMA TY-B PG 64-22 (7.5 IN)	TON	17,424.0	\$65.00	\$1,132,560.00
3416047	D-GR HMA TY-D SAC-A PG 76-22 (3 IN)	TON	6,969.6	\$123.00	\$857,260.80
5006001	MOBILIZATION	LS	1.0	-	\$549,562.38
5022125	BARRICADES, SIGNS AND TRAFFIC HANDLING	EA	2.0	\$1,500.00	\$3,000.00
5296005	CONC CURB (MONO) (TY II)	LF	10,560.0	\$6.00	\$63,360.00
5306004	DRIVEWAYS (CONC)	SY	288.0	\$64.00	\$18,432.00
5316003	CONC SIDEWALKS (6")	SY	7,040.0	\$52.00	\$366,080.00
	DRAINAGE	MI	1.0	\$1,500,000.00	\$1,500,000.00
PAV	ENT MARKINGS AND SIGNS	MI	1.0	\$80,000.00	\$80,000.00
	UTILITIES	MI	1.0	\$400,000.00	\$400,000.00
	SW3P	MI	1.0	\$30,000.00	\$30,000.00
				TOTAL	\$6,045,187.00
	Pre-Construction			20\%	\$1,209,037.40
	onstruction Oversight			10\%	\$604,518.70
	Contingency			10\%	\$604,518.70
				TOTAL	\$8,500,000
				ROW TOTAL	\$9,500,000

C4D (B/P)

C5U (Cost/Mile)					
Item No, Descrip Code	Description	Unit	Est	Avg Unit Cost	COST
1006002	PREPARING ROW	STA	80.0	\$2,500.00	\$200,000.00
1106001	EXCAVATION (ROADWAY)	CY	17,013.3	\$10.00	\$170,133.33
1326003	EMBANKMENT (FINAL) (ORD CONT) (TY B)	CY	2,552.0	\$10.00	\$25,520.00
1606003	FURNISHING AND PLACING TOPSOIL (4")	SY	17,013.3	\$1.50	\$25,520.00
1626002	BLOCK SODDING	SY	1,701.3	\$3.00	\$5,104.00
1686001	VEGETATIVE WATERING	MG	250.0	\$12.00	\$3,000.00
1922020	PLANT MATERIAL (1 GAL) (TREE)	EA	176.0	\$8.00	\$1,408.00
2602001	LIME (HYDRATED LIME(DRY))	TON	612.5	\$148.72	\$91,091.00
2602006	LIME TRT (EXST MATL) (6")	SY	34,026.7	\$1.68	\$57,164.80
2762224	CEM TRT (PLNT MX) (CL N) (TY E) (GR 4) (6")	SY	34,026.7	\$8.30	\$282,421.33
3416008	D-GR HMA TY-B PG 64-22 (7.5 IN)	TON	14,036.0	\$65.00	\$912,340.00
3416047	D-GR HMA TY-D SAC-A PG 76-22 (3 IN)	TON	5,614.4	\$123.00	\$690,571.20
5006001	MOBILIZATION	LS	1.0	-	\$493,514.57
5022125	BARRICADES, SIGNS AND TRAFFIC HANDLING	EA	2.0	\$1,500.00	\$3,000.00
5296005	CONC CURB (MONO) (TY II)	LF	10,560.0	\$6.00	\$63,360.00
5306004	DRIVEWAYS (CONC)	SY	288.0	\$64.00	\$18,432.00
5316003	CONC SIDEWALKS (6")	SY	7,040.0	\$52.00	\$366,080.00
	DRAINAGE	MI	1.0	\$1,500,000.00	\$1,500,000.00
PAV	MENT MARKINGS AND SIGNS	MI	1.0	\$90,000.00	\$90,000.00
	UTILITIES	MI	1.0	\$400,000.00	\$400,000.00
	SW3P	MI	1.0	\$30,000.00	\$30,000.00
				TOTAL	\$5,428,661.00
	Pre-Construction			20\%	\$1,085,732.20
	onstruction Oversight			10\%	\$542,866.10
	Contingency			10\%	\$542,866.10
				TOTAL	\$7,600,000
				ROW TOTAL	\$8,400,000

0.51

P4D (Cost/Mile)					
Item No, Descrip Code	Description	Unit	Est	Avg Unit Cost	COST
1006002	PREPARING ROW	STA	105.0	\$2,500.00	\$262,500.00
1106001	EXCAVATION (ROADWAY)	CY	22,293.3	\$10.00	\$222,933.33
1326003	EMBANKMENT (FINAL) (ORD CONT) (TY B)	CY	3,344.0	\$10.00	\$33,440.00
1606003	FURNISHING AND PLACING TOPSOIL (4")	SY	22,293.3	\$1.50	\$33,440.00
1626002	BLOCK SODDING	SY	2,229.3	\$3.00	\$6,688.00
1686001	VEGETATIVE WATERING	MG	250.0	\$12.00	\$3,000.00
1922020	PLANT MATERIAL (1 GAL) (TREE)	EA	176.0	\$8.00	\$1,408.00
2602001	LIME (HYDRATED LIME(DRY))	TON	802.6	\$148.72	\$119,362.67
2602006	LIME TRT (EXST MATL) (6")	SY	44,586.7	\$1.68	\$74,905.60
2762224	CEM TRT (PLNT MX) (CL N) (TY E) (GR 4) (6")	SY	44,586.7	\$8.30	\$370,069.33
3416008	D-GR HMA TY-B PG 64-22 (7.5 IN)	TON	18,392.0	\$65.00	\$1,195,480.00
3416047	D-GR HMA TY-D SAC-A PG 76-22 (3 IN)	TON	7,356.8	\$123.00	\$904,886.40
5006001	MOBILIZATION	LS	1.0	-	\$567,198.53
5022125	BARRICADES, SIGNS AND TRAFFIC HANDLING	EA	4.0	\$1,500.00	\$6,000.00
5296005	CONC CURB (MONO) (TY II)	LF	10,560.0	\$6.00	\$63,360.00
5306004	DRIVEWAYS (CONC)	SY	288.0	\$64.00	\$18,432.00
5316003	CONC SIDEWALKS (6")	SY	7,040.0	\$52.00	\$366,080.00
	DRAINAGE	MI	1.0	\$1,500,000.00	\$1,500,000.00
PAV	MENT MARKINGS AND SIGNS	MI	1.0	\$60,000.00	\$60,000.00
	UTILITIES	MI	1.0	\$400,000.00	\$400,000.00
	SW3P	MI	1.0	\$30,000.00	\$30,000.00
				TOTAL	\$6,239,184.00
	Pre-Construction			20\%	\$1,247,836.80
	onstruction Oversight			10\%	\$623,918.40
	Contingency			10\%	\$623,918.40
				TOTAL	\$8,700,000
				ROW TOTAL	\$11,100,000

P4D (B) (Cost/Mile)					
Item No, Descrip Code	Description	Unit	Est	Avg Unit Cost	COST
1006002	PREPARING ROW	STA	110.0	\$2,500.00	\$275,000.00
1106001	EXCAVATION (ROADWAY)	CY	22,293.3	\$10.00	\$222,933.33
1326003	EMBANKMENT (FINAL) (ORD CONT) (TY B)	CY	3,344.0	\$10.00	\$33,440.00
1606003	FURNISHING AND PLACING TOPSOIL (4")	SY	22,293.3	\$1.50	\$33,440.00
1626002	BLOCK SODDING	SY	2,229.3	\$3.00	\$6,688.00
1686001	VEGETATIVE WATERING	MG	250.0	\$12.00	\$3,000.00
1922020	PLANT MATERIAL (1 GAL) (TREE)	EA	176.0	\$8.00	\$1,408.00
2602001	LIME (HYDRATED LIME(DRY))	TON	802.6	\$148.72	\$119,362.67
2602006	LIME TRT (EXST MATL) (6")	SY	44,586.7	\$1.68	\$74,905.60
2762224	CEM TRT (PLNT MX) (CL N) (TY E) (GR 4) (6")	SY	44,586.7	\$8.30	\$370,069.33
3416008	D-GR HMA TY-B PG 64-22 (7.5 IN)	TON	18,392.0	\$65.00	\$1,195,480.00
3416047	D-GR HMA TY-D SAC-A PG 76-22 (3 IN)	TON	7,356.8	\$123.00	\$904,886.40
5006001	MOBILIZATION	LS	1.0	-	\$586,752.53
5022125	BARRICADES, SIGNS AND TRAFFIC HANDLING	EA	4.0	\$1,500.00	\$6,000.00
5296005	CONC CURB (MONO) (TY II)	LF	10,560.0	\$6.00	\$63,360.00
5306004	DRIVEWAYS (CONC)	SY	288.0	\$64.00	\$18,432.00
5316003	CONC SIDEWALKS (6")	SY	10,560.0	\$52.00	\$549,120.00
	DRAINAGE	MI	1.0	\$1,500,000.00	\$1,500,000.00
PAV	IENT MARKINGS AND SIGNS	MI	1.0	\$60,000.00	\$60,000.00
	UTILITIES	MI	1.0	\$400,000.00	\$400,000.00
	SW3P	MI	1.0	\$30,000.00	\$30,000.00
				TOTAL	\$6,454,278.00
	Pre-Construction			20\%	\$1,290,855.60
	onstruction Oversight			10\%	\$645,427.80
	Contingency			10\%	\$645,427.80
				TOTAL	\$9,000,000
				ROW TOTAL	\$11,600,000

R4. (8)

P6D (Cost/Mile)					
Item No, Descrip Code	Description	Unit	Est	Avg Unit Cost	COST
1006002	PREPARING ROW	STA	130.0	\$2,500.00	\$325,000.00
1106001	EXCAVATION (ROADWAY)	CY	29,333.3	\$10.00	\$293,333.33
1326003	EMBANKMENT (FINAL) (ORD CONT) (TY B)	CY	4,400.0	\$10.00	\$44,000.00
1606003	FURNISHING AND PLACING TOPSOIL (4")	SY	29,333.3	\$1.50	\$44,000.00
1626002	BLOCK SODDING	SY	2,933.3	\$3.00	\$8,800.00
1686001	VEGETATIVE WATERING	MG	250.0	\$12.00	\$3,000.00
1922020	PLANT MATERIAL (1 GAL) (TREE)	EA	176.0	\$8.00	\$1,408.00
2602001	LIME (HYDRATED LIME(DRY))	TON	1,056.0	\$148.72	\$157,048.32
2602006	LIME TRT (EXST MATL) (6")	SY	58,666.7	\$1.68	\$98,560.00
2762224	CEM TRT (PLNT MX) (CL N) (TY E) (GR 4) (6")	SY	58,666.7	\$8.30	\$486,933.33
3416008	D-GR HMA TY-B PG 64-22 (7.5 IN)	TON	24,200.0	\$65.00	\$1,573,000.00
3416047	D-GR HMA TY-D SAC-A PG 76-22 (3 IN)	TON	9,680.0	\$123.00	\$1,190,640.00
5006001	MOBILIZATION	LS	1.0	-	\$668,959.50
5022125	BARRICADES, SIGNS AND TRAFFIC HANDLING	EA	4.0	\$1,500.00	\$6,000.00
5296005	CONC CURB (MONO) (TY II)	LF	10,560.0	\$6.00	\$63,360.00
5306004	DRIVEWAYS (CONC)	SY	288.0	\$64.00	\$18,432.00
5316003	CONC SIDEWALKS (6")	SY	7,040.0	\$52.00	\$366,080.00
	DRAINAGE	MI	1.0	\$1,500,000.00	\$1,500,000.00
PAV	ENT MARKINGS AND SIGNS	MI	1.0	\$80,000.00	\$80,000.00
	UTILITIES	MI	1.0	\$400,000.00	\$400,000.00
	SW3P	MI	1.0	\$30,000.00	\$30,000.00
				TOTAL	\$7,358,555.00
	Pre-Construction			20\%	\$1,471,711.00
	onstruction Oversight			10\%	\$735,855.50
	Contingency			10\%	\$735,855.50
				TOTAL	\$10,300,000
				ROW TOTAL	\$13,700,000

Pen

P8D (Cost/Mile)					
Item No, Descrip Code	Description	Unit	Est	Avg Unit Cost	COST
1006002	PREPARING ROW	STA	150.0	\$2,500.00	\$375,000.00
1106001	EXCAVATION (ROADWAY)	CY	36,373.3	\$10.00	\$363,733.33
1326003	EMBANKMENT (FINAL) (ORD CONT) (TY B)	CY	5,456.0	\$10.00	\$54,560.00
1606003	FURNISHING AND PLACING TOPSOIL (4")	SY	36,373.3	\$1.50	\$54,560.00
1626002	BLOCK SODDING	SY	3,637.3	\$3.00	\$10,912.00
1686001	VEGETATIVE WATERING	MG	250.0	\$12.00	\$3,000.00
1922020	PLANT MATERIAL (1 GAL) (TREE)	EA	176.0	\$8.00	\$1,408.00
2602001	LIME (HYDRATED LIME(DRY))	TON	1,309.4	\$148.72	\$194,733.97
2602006	LIME TRT (EXST MATL) (6")	SY	72,746.7	\$1.68	\$122,214.40
2762224	CEM TRT (PLNT MX) (CL N) (TY E) (GR 4) (6")	SY	72,746.7	\$8.30	\$603,797.33
3416008	D-GR HMA TY-B PG 64-22 (7.5 IN)	TON	30,008.0	\$65.00	\$1,950,520.00
3416047	D-GR HMA TY-D SAC-A PG 76-22 (3 IN)	TON	12,003.2	\$123.00	\$1,476,393.60
5006001	MOBILIZATION	LS	1.0	-	\$769,470.46
5022125	BARRICADES, SIGNS AND TRAFFIC HANDLING	EA	4.0	\$1,500.00	\$6,000.00
5296005	CONC CURB (MONO) (TY II)	LF	10,560.0	\$6.00	\$63,360.00
5306004	DRIVEWAYS (CONC)	SY	288.0	\$64.00	\$18,432.00
5316003	CONC SIDEWALKS (6")	SY	7,040.0	\$52.00	\$366,080.00
	DRAINAGE	MI	1.0	\$1,500,000.00	\$1,500,000.00
PAV	ENT MARKINGS AND SIGNS	MI	1.0	\$100,000.00	\$100,000.00
	UTILITIES	MI	1.0	\$400,000.00	\$400,000.00
	SW3P	MI	1.0	\$30,000.00	\$30,000.00
				TOTAL	\$8,464,176.00
	Pre-Construction			20\%	\$1,692,835.20
	onstruction Oversight			10\%	\$846,417.60
	Contingency			10\%	\$846,417.60
				TOTAL	\$11,800,000
				ROW TOTAL	\$15,800,000

P8D

Transportation Plan Map

Kyle Transportation Master Plan - 2045 Road Classification

E-1

Kyle Transportation Master Plan - 2045 Right-of-Way

Kyle Transportation Master Plan - 2045 Proposed Projects

Kyle Transportation Master Plan - 2016-2045 Prioritization

Major Roadway Planning Guide

No.	Project	Owner	District	Pr. Cassifitation	Ex. Cassification	Improvement	$\frac{\text { Kyle Connected }}{\text { Lenght (Miss }}$	- Transportation	Plan 2040	Source	Pr. Row (F)	Ex. Row (FF)	Pr.tanes	Ex. Lanes	Pr. Bike lanes	Ex. Bike lanes	Pr. Bike failities	Ex. Bike failities	Pr.Sidewalks	Sidewalks
	Shadow Crae			${ }^{\text {cu }}$		Ine enved rosad wh Twill			alarer								\bigcirc	\bigcirc		
93 94	Snato creek		${ }_{\text {E }}^{\text {E }}$	${ }_{\text {cau }}^{120}$.	Nev 4lane coad	${ }_{10}^{119}$	$\frac{\text { windy }}{\text { mill }}$	fiome	${ }_{\text {cke }}^{\substack{\text { krve } 2015 \\ \text { Kive } 2015}}$	70 60	\bigcirc	${ }_{2}$	$\stackrel{0}{0}$	\bigcirc	\bigcirc	!	!	${ }_{2}^{2}$	\bigcirc
${ }_{95}$	Sumbetill		${ }^{6}$	${ }^{\text {civ }}$	R2U		${ }_{3,36}$	${ }^{\text {He3s }}$	Tumessile Exesion	Campo 2090	60	${ }_{90}$	${ }^{3}$	2	0	0	0	0	2	
$\stackrel{\text { ¢ }}{\substack{\text { Total } \\ \hline}}$	Varingon	krve	2	${ }^{\text {P40 }}$	R2U	Widen toa 4 Alne e ivided	${ }_{\substack{2888 \\ 14.42}}^{2}$	f. 110		CaMPP 2040	¢,	${ }_{2,90}^{2,90}$	${ }_{270}$	90	4	0	${ }^{7}$	。	154	$\stackrel{\square}{5}$

[^2]

City of Kyle 2015 Transportation Master Plan Project Prioritiza																						
Rank	Project	Improvement	from	то	w cost	Total cost	owner	Develoer Contib.	cover	city cost	cost	cost	District		${ }_{\text {a }}^{\text {ajorional }}$		${ }_{\text {Reeuired }}^{\text {Row }}$	Suporst teomemic		Envirommenal)/ Constrution ssues	$\underbrace{\text { a }}_{\substack{\text { Oranage } \\ \text { Benefits }}}$	(iot
89	opal		Ons sazeco	${ }_{\text {H/35 }}$	${ }_{\text {S3,20,000 }}^{5 \text { S50000 }}$	$\frac{\text { S16,780,000 }}{\text { S120000 }}$	Haysti]	\bigcirc	¢0	${ }_{50}^{50}$	S16,7880,000	50	2	${ }^{20}$	5	${ }_{\text {c }}^{10} 10$	5	${ }_{5}^{5}$	\bigcirc	${ }_{5}^{0}$	$\stackrel{0}{0}$	- ${ }_{45}^{45}$
${ }^{90}$	(s)		Ampor	Satembite	S4,	S9,		$\stackrel{1}{1}$	Sp,	50	50	${ }_{50}$	E	${ }_{10}$	5	${ }_{15}^{15}$	5	5	5	\bigcirc	0	${ }_{45}^{45}$
${ }^{92}$			Center	Opal	Sill	${ }_{\substack{\text { S6, 26,0,000 } \\ 54380,000}}$		\bigcirc	50 50	S6,260,000		50 50	${ }^{2}$	10 10	5	${ }^{15}$	5	5	5	5	$\stackrel{0}{5}$	
	f0 150 (M)	Widen 0 o a 4 line divided road with WW WI	Ens337	kriel coop (sw)	S5,20,000	S45,100,000	Tर00T	0	50	S0	50	S45,100,000	E	5	5	$\stackrel{5}{5}$	5	${ }^{10}$	5	5	\bigcirc	${ }_{40}^{40}$
	$\frac{\text { Roland }}{\text { kxje cosising }}$		loll		¢			1	S50	S13,188,000	so 50	$\stackrel{50}{50}$	$\stackrel{2}{4.6}$	5	5	${ }^{15}$	5	${ }^{5}$	\bigcirc	${ }^{5}$	\bigcirc	
* Bond Project = fully funded] = Subsidiary to [1]																						
Yellow Highlights are the highest-ranked projects in the City's responsibility (Does not include ETJ/County or TxDOT, although those are scored and ranked.																						

City of Kyle 2015 Transportation Master Plan Project Prioritization (District 4)																						
Rank	Project	rovement	from	то	Row cost	Total cost	Owner	Developer Contrib.	${ }_{\text {develo }}^{\text {Dever }}$	city cost	County cost	Oit cost	District		${ }_{\substack{\text { Additiona } \\ \text { conectivir }}}^{\text {a }}$	${ }_{\text {coser }}^{\text {costibity }}$	${ }_{\text {Reoutred }}^{\text {Rew }}$	Suppors EEconemic	${ }_{\substack{\text { Suporte bv } \\ \text { community }}}^{\text {a }}$			${ }_{\substack{\text { Totar } \\ \text { sore }}}^{\text {a }}$
1 1	R1626				¢0	Sspo,		0	¢		50	${ }_{\text {S30,000 }}^{50}$	${ }_{4}^{4}$	10	${ }^{\text {¢ }}$	¢15 15	${ }^{15}$	${ }^{\frac{10}{5}}$	$\frac{10}{5}$	5 5	\bigcirc	
	Ois		Post	*M 150		$\xrightarrow{\text { S44,020,000 }}$				$\xrightarrow{534020,0000}$			${ }_{2}^{2,4}$	${ }_{5}$	${ }_{10}$	5	${ }_{15}$	10				70 65
${ }_{4}$			\&M1626	sm 150	50	S26,60,0,00	troor	0	${ }_{50}$	50	${ }_{50}$	S26,600,000	4	${ }^{10}$	${ }_{10}$	${ }^{10}$	${ }^{15}$	${ }_{10}^{10}$	5	\bigcirc	5	${ }^{65}$
	Bureson*	widen to 0 2-Imane road		Lockhar	50		${ }_{\text {kve }}^{\text {kje }}$	0	${ }_{50}$	St,00,000	${ }_{50}^{50}$	${ }_{50} 5$		${ }^{10}$								
${ }_{7}{ }_{7}$	Coner	Husen patifig peastans stev	atemita		¢ ${ }_{50}^{50}$		$\frac{\substack{\text { kre } \\ \text { kje }}}{\text { kne }}$	\bigcirc	¢		50 50 50	¢	2.4. 2.4 2.4	年10	¢ 10	- $\frac{15}{15}$	-	$\frac{5}{5}$	${ }^{\frac{10}{5}}$	$\frac{5}{5}$	\bigcirc	
${ }^{8}$			atele	en 270	so 50 50		${ }_{\text {Krye }}^{\text {Krome }}$	\%	¢	${ }_{\text {s30,000 }}$	¢0	${ }_{50}^{513}$	2.4	${ }^{10}$	5	${ }^{15}$	${ }^{15}$	${ }_{10}^{10}$	5	5	\bigcirc	
${ }^{10}$	Ateristseets		em 270	WCenter Peobe	so $\substack{50 \\ 50}$			$\stackrel{0}{\circ}$		${ }_{\substack{\text { S23,70, } \\ 5000}}^{\substack{\text { Sa }}}$	($\stackrel{4.4}{2.6}$	10 10 10	5 5 5		15 15 15	10 5	${ }^{10}$	$\stackrel{5}{5}$	${ }_{5}^{5}$	- ${ }^{60}$ 60
	Koheres Cosising		Atupr	W Centere Reber	S60,000		${ }_{\text {cole }}^{\substack{\text { kover }}}$	1	\%3, ${ }_{\text {3, }}$		50 50 50	${ }_{50}$	${ }_{4,6}$	${ }_{10}^{10}$	${ }_{15}$	${ }_{15}^{15}$	${ }_{5}^{15}$	5	${ }_{10}$	5	\bigcirc	
${ }^{13}$	${ }^{\text {Butreson* }}$		Lochar		Stateon	${ }_{\substack{\text { S7, } 10.0000}}^{\text {S452000 }}$	${ }_{\text {krye }}^{\text {kre }}$	\bigcirc	(50		s0 50 50	${ }_{\substack{50 \\ 50}}$	${ }^{4.6}$	5 10	5	15 15 15	${ }_{5}^{5}$	10 10 10	${ }_{5}^{10}$	5	\bigcirc	¢
${ }^{15}$	${ }^{\text {fo } 1500(\mathrm{~m}}$		${ }^{1435}$	Rebal ${ }^{\text {a }}$	50	S4,20,000	Troor		s0	50	S0		2.46	5			${ }^{15}$	5			0	
${ }^{17}$	Burleos (cromvel)		Spanimbrach	com	S9,700,000	S19,60,0,000	${ }_{\text {krye }}$	1	S00,000		s0 50 0	${ }_{50}$	${ }_{4,6}$	10	${ }_{15}$	${ }_{10}$	5	${ }_{10}$	${ }_{0}^{10}$	0	-	
	krje Cossing			krve cossing	\$13,00,000	2,00	k.je		29,00,000	so			4.6	5	5		5	10				

[^3]| City of Kyle 2015 Transportation Master Plan Project Prioritiation（District 6 ） | |
| :---: |
| Rank | Proie | Improvement | From | To | ${ }^{\text {row cost }}$ | Total cost | Owner | Developer Contribe | ${ }_{\text {dever }}^{\text {Devitoer }}$ | city cost | County cost | Tx00ot cost | District | | | $\underbrace{\substack{\text { Cestility }}}_{\text {ceast }}$ | Reoutred | Sppers Econemic | Suporea bv | | | Totar |
| | abee | Newe | | ${ }_{\text {gabee }}^{\text {Rel }}$ | ${ }_{\text {S3，70．000 }}^{\text {So }}$ | | $\frac{\text { krye }}{\substack{\text { kroor }}}$ | $\stackrel{1}{0}$ | ${ }_{\substack{\text { S7，340，000 } \\ 50}}^{\text {So }}$ | ¢ | ¢0 | ${ }_{\text {S19，50，000 }}^{\text {So }}$ | ${ }_{6}^{6}$ | | | | | | | | | |
| ${ }^{3}$ | Gotort | Neen 4 tine dxweed road | Sumton creek | krye ehur | S1．900，000 | S3，40，000 | krve | 1 | S2，000，000 | 50 | 50 | ${ }_{50}$ | ${ }^{6}$ | ${ }_{20}^{20}$ | ${ }^{15}$ | ${ }^{15}$ | $\stackrel{5}{5}$ | 5 | ${ }_{10}^{10}$ | 5 | ！ | ${ }^{75}$ |
| 5 | 隹 | | lits | tor | so | ${ }_{\text {S }}{ }_{\text {S }}$ | | ！ | 50 | ${ }_{\text {Sta }}$ | ${ }_{50}$ | ${ }_{50}$ | ${ }^{6}$ | $\stackrel{20}{10}$ 10 | ${ }_{15}^{5}$ | ${ }_{10}$ | ${ }^{15}$ | ${ }_{10}$ | ${ }_{10}^{10}$ | ${ }^{5}$ | | |
| | | 13．tilimate intesectionstew | | kyle crosit | S3，${ }_{\text {So }}$ | | | $\stackrel{0}{1}$ | ¢ ${ }_{\text {S7，} 50.000}$ | $\frac{50}{50}$ | so
 50
 50 | | ${ }^{6} 6$ | （10 | ${ }_{\text {¢ }}^{10}$ | ${ }^{\frac{15}{15}}$ | ${ }^{\frac{15}{5}}$ | ${ }_{5}^{5}$ | | 5 | 0 | |
| | Center | | | | | ${ }_{\text {Sli，} 90,000}$ | krle | 0 | ${ }_{50}$ | S1．90， 0 ，00 | ${ }_{50}$ | ${ }_{\text {so }}^{50}$ | 2.4 .6 | ${ }^{10}$ | | | ${ }^{15}$ | | ${ }^{10}$ | | | |
| 10 | Sotort ${ }^{\text {e }}$ | | atemman | | ${ }_{\text {so }}$ | ¢00， | ${ }_{\text {kreme }}^{\substack{\text { krle }}}$ | \bigcirc | ${ }_{50}^{50}$ | | （ $\begin{gathered}50 \\ 50 \\ 50\end{gathered}$ | ${ }_{50}$ | 6^{6} | ${ }^{10}$ | 5 | ${ }^{15}$ | ${ }^{15}$ | 5 | 10 10 | 5 | 0 | ${ }^{65}$ |
| | | | ${ }^{\text {ata }}$ | bent | | | | | | | | | | | | | | $\begin{array}{r}\text { 5 } \\ \hline 10 \\ \hline\end{array}$ | | | | |
| ${ }^{13}$ | Mareeprobe Ave | Neen 4 Amene diveded road | Kotheses cososing | | S5，800，000 | Sto，90，000 | kive | 1 | S10，88， 000 | 50 | ${ }_{50}$ | ${ }_{50}$ | 6 | ${ }^{10}$ | ${ }^{15}$ | ${ }^{15}$ | 5 | ${ }^{10}$ | s | 5 | 0 | |
| | | Afewe | | s＋21 | ${ }_{50}^{50}$ | | $\frac{\text { krye }}{\substack{\text { kyle }}}$ | \bigcirc | ${ }_{50}^{50}$ | | so 50 50 | ${ }_{50}^{50}$ | ${ }^{2.6}$ | ${ }_{10}^{10}$ | 10
 10
 10 | ${ }_{5}^{15}$ | ${ }_{\text {L }}^{15}$ | ${ }_{10}$ | 5 | ${ }_{5}^{5}$ | $\stackrel{5}{5}$ | |
| | | | beets．Lleht | Varingon | ${ }_{\text {S4，350，00 }}^{5}$ | ${ }^{\text {S223，3，0，000 }}$ | rxoor | \bigcirc | so 50 50 | ${ }^{\text {so }}$ | ${ }_{50}^{50}$ | S22，${ }^{\text {270，000 }}$ | ${ }^{2.6}$ | ${ }_{20}^{20}$ | ${ }_{5}^{10}$ | 5 | ${ }_{5}^{5}$ | 5 | ${ }_{10}^{10}$ | \bigcirc | | ${ }^{60}$ |
| $\underline{18}$ | Center | Sf：husat traficis siml | atold 81 | | ${ }_{50}^{50}$ | $\xrightarrow{535,700000}$ | kye | 0 | ${ }_{50}$ | Siso，00 | 50 | ${ }_{50}$ | | | 5 | ${ }_{15}^{15}$ | ${ }_{15}^{15}$ | 5 | 5 | 5 | \bigcirc | |
| | | | $\frac{\text { Oactin }}{\substack{\text { arupr }}}$ | Mashh | | | $\underbrace{\substack{\text { krye } \\ \text { krle }}}_{\text {krye }}$ | | ${ }_{\substack{\text { S5，9，0，000 } \\ 53,800000}}$ | 50 50 50 | s0 50 50 | 50
 50
 50 | ${ }^{\text {4，6 }}$ | 10 | 20
 15
 15 | 15
 ${ }_{15}^{15}$ | | ${ }_{5}^{5}$ | | \bigcirc | \bigcirc | ${ }^{6}$ |
| ${ }_{2} 2$ | NR2 | New 2 Line diduded road wh Twich | kree cososing | Marempace | S3，200，000 | S6，42，000 | kyle | 1 | S6，42，0000 | 50 | 50 | ${ }_{50}$ | 6 | ${ }^{10}$ | 15 | | 5 | 10 | 0 | | | |
| | | | Oacy | Coton Gin | s．0．00000 | | | | S17．200．000 | ${ }_{50}^{50}$ | so
 so
 50 | ${ }_{5} 50$ | 6^{6} | ${ }_{10}^{10}$ | ${ }^{15}$ | ${ }_{5}^{10}$ | | ${ }_{5}^{10}$ | ${ }_{10}^{10}$ | \％ | | |
| ${ }_{25}^{24}$ | | | ${ }^{1+35}$ | Tunesswle Exesersion | ${ }_{50}$ | ${ }^{\text {S52，00，000 }}$ | | 0 | ${ }_{50}$ | S55，20，000 | 50
 50 | ${ }_{50} 5$ | ${ }^{2.6}$ | ${ }_{5}^{10}$ | 5 | ${ }_{10}$ | ${ }^{15}$ | ${ }_{10}$ | $\frac{10}{5}$ | 5 | 5 | |
| 25 26 | Suntol／Gotort． | | ${ }^{14355}$ | cerman | | S3800，000 | krve | 。 | ${ }_{50}$ | S．8．80，000 | ${ }_{50}^{50}$ | ${ }_{50}$ | ${ }^{6}$ | ${ }_{5}^{10}$ | | ${ }_{15}^{15}$ | | 5 | ${ }_{10}$ | | | |
| 26 $\stackrel{27}{28}$ 28 | fin 50 | Widen 02 2 2 Ine | ${ }^{1+3}$ | Rebelor | so | S4， | troor | 0 | ${ }_{50}$ | so | ${ }_{50}$ | Sta20，000 | ${ }^{2.6}$ | 5 | 5 | | ${ }^{15}$ | 5 | ${ }_{5}^{5}$ | ${ }_{5}^{5}$ | | |
| | Soroter Cosising | | $\xrightarrow{\text { atstool }}$ athes5 | | | S1．84，000 | | \bigcirc | | ${ }_{50}$ | ${ }^{50}$ | | ${ }^{6}$ | ${ }_{\text {c }}^{10} 10$ | 5 | ${ }^{\text {15 }}$ | $\stackrel{5}{5}$ | ${ }_{5}^{5}$ | | | | |
| ${ }^{31}$ | Uutor／ist Mill | | Lemman | SH21 | S37．500．000 | 52，60，000 | | | S72600．000 | 50
 50
 50 | 50
 50
 50 | | ${ }^{2.6}$ | 10 | | | | ${ }^{10}$ | 5 | 0 | 5 | |
| 32 | Burisoon（Cromvel） | | Spring Branh | commell | S9，700，000 | ${ }^{\text {S31，50，0，000 }}$ | Hex | 1 | S19，600，000 | | 50
 50
 50 | ${ }_{5}^{50}$ | ${ }_{4,6}^{4.6}$ | ${ }^{10}$ | ${ }_{15}^{15}$ | ${ }^{10}$ | ${ }^{\frac{15}{5}}$ | ${ }_{10}^{10}$ | 10 | \bigcirc | \bigcirc | ${ }_{\text {co }}^{5}$ |
| | Letman． | | | EM 150 | Ss50，000 | S6，100，000 | k，kle | 0 | | S6，100，000 | 50 | ${ }_{50}$ | ${ }_{2,6}$ | 5 | | | | | | | | |
| | kxve cososing | New 2 Linee | fum 2770 | $\frac{\text { bibee }}{\text { kive cossing }}$ | | 隹 | | $\stackrel{1}{1}$ | S29，00，000 | ¢50 | ${ }_{\text {Sa }}^{50} 5$ | ${ }_{50}^{50}$ | ${ }_{4,6}$ | ${ }_{5}$ | 5 | ${ }_{10}$ | ${ }_{5}^{5}$ | 1 | ${ }_{5}^{5}$ | | ${ }_{5}^{5}$ | ${ }_{45}^{45}$ | －Band fopient fult tunded

Cost Estimation Memorandum

Typical Section Cost Estimate			
Typical Section	ROW	Cost Estimate (per Mile)	
			w/o ROW Cost
MUP	24^{\prime}	$\$ 900,000$	w/ ROW Cost
L2U	60^{\prime}	$\$ 5,500,000$	$\$ 3,400,000$
R2U	60^{\prime}	$\$ 3,600,000$	$\$ 11,800,000$
C2U	60^{\prime}	$\$ 6,100,000$	$\$ 7,400,000$
C2U - Bike or Parking	60^{\prime}	$\$ 6,200,000$	$\$ 12,400,000$
C3U	60^{\prime}	$\$ 6,300,000$	$\$ 12,500,000$
C4U	70^{\prime}	$\$ 6,700,000$	$\$ 12,600,000$
C4U - Bike or Parking	80^{\prime}	$\$ 7,700,000$	$\$ 14,100,000$
C4D	80^{\prime}	$\$ 7,400,000$	$\$ 16,100,000$
C4D - Bike or Parking	90^{\prime}	$\$ 8,500,000$	$\$ 15,800,000$
C5U	80^{\prime}	$\$ 7,600,000$	$\$ 18,000,000$
P4D	105^{\prime}	$\$ 8,700,000$	$\$ 16,000,000$
P4D - Bike	110^{\prime}	$\$ 9,000,000$	$\$ 19,800,000$
P6D	130^{\prime}	$\$ 10,300,000$	$\$ 20,600,000$
P8D	150^{\prime}	$\$ 11,800,000$	$\$ 24,000,000$
			$\$ 27,600,000$

Other types of projects that did not fit a specific typical section were given a general cost estimate; $\$ 100,000$ total cost for a minor improvement, $\$ 300,000$ total cost for a traffic signal, and $\$ 500,000$ construction cost for a 2-lane roundabout. Bridge cost estimates were individually calculated and they included structure, retaining wall, and aesthetic costs if needed. An additional $\$ 1$ million were added to roadway projects that crossed a body of water and an additional $\$ 2$ million were added if a roadway crossed the UPRR track. The estimated cost to design and build all 96 proposed projects is $\$ 2,037,240,000$ while $\$ 580,040,000$ falls under the ownership of the City of Kyle.

Cost Estimate Total by Owner	
Owner	Total Cost
Kyle	$\$ 580,040,000$
Hays-ETJ	$\$ 486,300,000$
Hays-non-ETJ	$\$ 398,120,000$
TxDOT	$\$ 572,780,000$
TOTAL	$\$ \mathbf{2 , 0 3 7 , 2 4 0 , 0 0 0}$

2925 BRIARPARK DRIVE
HOUSTON, TX 77042
TEL 713.266.6900
FAX 713.266.2089
www.lan-inc.com

Kyle Connected - Transportation Master Plan 2040													
No.	Project	Owner	District	Improvement	Length (Miles)	From	To	Construction Cost	Pre-Construction Cost	Oversight Cost	Contingency Cost	${ }_{\text {Row Cost }}$	Total Cost
74	NR2	Kyle	6	New 2 -lane divided road with TWLTL	0.51	kyle Crossing	Market	\$2,30,000	5460,000	\$230,000	\$230,000	\$3,200,000	56,42,000
75	Old 81	Kyle	2.6	R16: Widen to a 2 --lane divided road with optional bike or parking lanes	0.98	at W $11-35$ frontage road		\$4,50,000	\$900,000	5450,000	5450,000	50	\$6,30,000
76	Old stagecoach	kyle	2,4	Widen toa 2 -lane road with optional bike or parking lanes	5.24	Post	EM 150	\$24,300,000	54,880,000	\$2,43,000	\$2,430,000	50	\$44,020,000
77	Opal	kyle	2	New 4 -I/ane bridge; grade separation over IH-35	0.04	${ }^{\text {at } 1+3}$-35		S900,000	S180,000	\$90,000	590,000	50	${ }_{\text {S } 51,26,0000}$
78	Opal	Kyle	2	R24: Widen to a 4-Iane road over UPRR	1.52	Old Stagecoach	${ }^{1+-35}$	59,70,000	51,94,000	5970,000	5970,000	53,200,000	516,78,000
79	Opal	kyle	2	New 4-lane road	0.46	${ }^{1 H-35}$	CR158	52,20,000	\$440,000	\$220,000	\$220,000	\$3,400,000	\$6,480,000
80	Opal	Hays-ETJ	E	NLR21: New 4-1ane road	1.54	Old Stagecoach	cypress	\$7,30,000	\$1,46,000	\$730,000	5730,000	\$11,40,000	\$21,62,000
81	Plum Creek	Hav=non-ETJ	2	New 2 -lane road	1.04	Grist Mill	CR 202	\$4,10,000	5820,000	5410,000	5410,000	\$6,600,000	\$12,340,000
82	Post	Kyle	2	Widen to a 4 -lane road over Blanco river	2.18	\|1-35	Blanco River Ranch	\$12,000,000	\$2,00,000	\$1,20,000	\$1,200,000	50	\$16,800,000
83	RM 150	T×00T	2	Widen to a 2--ane divided road with TWITL	3.61	Creekside	SH21	\$17,200,000	53,40,000	\$1,72,000	\$1,72,000	50	\$24,88,000
84	RM 150	Tx00\%	2	Improve sight distance		at CR 202		570,000	S14,000	\$7,000	57,000	50	S100,000
85	Roland	kyle	2	R22: Widen to 4 -lane road	1.53	Old Stagecoach	${ }^{1+-35}$	57,70,000	\$1,540,000	S770,000	\$770,000	S2,400,000	\$13,180,000
86	5 Main	Kyle	E	NLR6: New 2-lane road	2.22	Yarrington	W 3rd	58,70,000	\$1,74,000	587,000	587,000	\$14,000,000	\$26,180,000
87	satterwhite	Hays-non-ETT	E	Widen to a 2-lane road over Brushy Creek	1.38	FM 2001	Turnessille Extension	56,70,000	\$1,30,000	5670,000	567,000	50	\$9,38,000
88	satterwhite	Hays-non-ETJ	E	New 2-1ane road over Brushy Creek	0.65	FM 2001	Satterwhite	\$3,60,000	\$720,000	\$360,000	\$360,00	\$4,100,000	\$9,140,000
89	scott	Kyle	2	R31: Widen to a 4-lane road, realign with FM 150 (1,100 ft)	0.77	Center	Opal	\$3,90,000	5780,000	5390,000	5390,000	5800,000	56,260,000
90	SH21	Tx00T	2	Widen toa 6 -lane divided road over four creeks	6.88	North of Old Spanish Trail	Yarrington	\$58,900,000	\$11,780,000	55,890,000	55,80,000	\$21,80,000	\$104,26,000
91	SH21	Tx00T	x	Instal traficic signal		Gist Mill		\$210,000	542,000	\$21,000	\$21,000		5300,000
92	Shadow Creek	Hays-ETJ	E	New 2 -lane divided road with TWITL	0.87	Hillisid Terrace	Quarter	\$3,00,000	5780,000	5390,000	5390,000	55,500,000	\$10,96,000
93	Shadow Creek	Hays-ETJ	E	New 4 -ane road	1.19	Windy Hill	Goforth	55,70,000	\$1,140,000	5570,000	5570,000	58,800,000	516,78,000
94	Sunise	Hays-ETJ	E	New 2-Iane road over R Richmond Branch	0.62	Dacy Ln	Sunise	\$3,50,000	5700,000	S350,000	5350,000	\$3,900,000	\$8,800,000
95	Windy Hill	Kyle	6	Widen toa 2 -lane divided road with Twitc over two creeks	3.36	${ }^{1+35}$	Turnersvill Extension	\$18,000,000	53,60,000	\$1,800,000	\$1,800,000		\$25,200,000
96	Varrington	kyle	2	Widen to a 4 -lane divided road	2.88	FM 110	SH 21	\$16,400,000	53,28,000	\$1,64,000	\$1,64,000	56,100,000	\$29,060,000
Total	.			\square	144.82	-		\$1,02,9,74,000	\$204,470,000	\$102,235,000	\$102,235,000	\$600,810,000	\$2,037,24,000

$\mathrm{E}=\mathrm{ETJ}$
$\mathrm{X}=$ Outsic

Funding Sources, Implementation, and Potential Policy Change

FUNDING SOURCES, IMPLEMENTATION, AND POTENTIAL POLICY CHANGES

The implementation of the Kyle Transportation Master Plan requires both a comprehensive set of funding and financing options and a sustained commitment by the City of investment in the phased development of roadway projects.

Sustainable City Funding Sources

Under the Local Government Code, the City of Kyle has a number of options available to create new transportation revenue sources, as well as manage existing general revenue funds for specific transportation purposes. The following are options and possible uses to implement the City's Transportation Master Plan.

- Transportation Impact Fee
- Transportation Fee
- Land Development Code/Zoning Ordinance

The city has expressed interest in modifying the existing road fee, currently based on the perimeter of a property which fronts roads to be improved. As of 2015, the Planning Department is exploring changing the fee basis to some combination of parcel size, number of residential units, and/or amount of commercial space.

Although the city has little additional bonding capacity at present, as existing bonds are paid off, there is the potential to issue additional bonds speculatively, rather than for existing projects. The 2015 road bonds for Harris County were structured this way.

In addition to new ordinances and fee proposals, the City Council should consider establishing a policy related to the annual budget and use of General Fund dollars for transportation purposes. These funds, again by policy, can be used for project development costs (environmental, design, etc.) and/or right of way acquisition and corridor preservation.

Also in the realm of policy, right-of-way preservation, through purchase or enforced dedication, is critical to the implementation of corridors identified on the plan, particularly those on new locations.

Project Implementation Recommendations

While it may be desirable to address projects on an individual basis, it is generally a better approach to address a broader corridor solution. By expanding the limits and scope of a project, there are more opportunities to forge financial partnerships and open doors to other funding sources. As such, using the table of priority projects, we have grouped together several individual projects into three larger projects with a broader scale. Cost estimates represent total project costs.

No.	Project / Proposed Improvement(s)		Cost
1.	Bebee Road - New and widen to 2-lane divided with center turn lane		
	- Priority 1	IH-35 to Bebee Road	\$7.5 million
	- Priority 41	IH-35 to SH 21	\$49.5 million
		Total	\$57.0 million
2.	CR 158/Opal Lane - New and widen to 4-lane divided corridor		
	- Priority 5	IH-35/Opal Lane - new overpass	\$1.5 million
	- Priority 6	IH-35 to CR 158	\$6.5 million
	- Priority 7	IH-35 to Turnersville Ext.	\$19.0 million
	- Priority 89	IH-35 to Old Stagecoach - Expanded Road with UPRR overpass	\$17.0 million
		Total	\$44.0 million
3.	Goforth Road - New and widen to 4-lane divided corridor		
	- Priority 3	Bunton Creek to Kyle Parkway	\$3.5 million
	- Priority 4	Brent Blvd. to Bunton Creek	\$7.5 million
		Total	\$11.0 million

Potential Policy Changes

A Complete Streets (CS) policy within Kyle is recommended in the Mobility Plan. CS policies are intended to impact all types of projects - maintenance, rehabilitation, new construction, major expansion, and new development.

Another recommendation for the City of Kyle is to add a clause to its existing subdivision ordinance requiring subdivisions to comply with the Transportation Master Plan. This would aid subdivisions when planning access points to future corridors.

The City should consider establishing an internal grants committee. The committee could include representatives from the Mayor's Office, Public Works, CIP, Finance, and Planning. There are a number of existing programs through CAMPO and TxDOT, and the possibility of additional programs depending on House Bill 20 and the current proposed federal surface transportation reauthorization bill (Surface Transportation Reauthorization and Reform Act of 201 - STRR).

Meeting Minutes

Lockwood, Andrews
\& Newnam, Inc.
A LEO A DALY COMPANY

Date: November 17, 2014

Project No.:	$140-10956-000$
Project:	Transportation Master Plan (TMP)
Client:	City of Kyle
Conference Date:	November 10, 2014
Conference Location:	City of Kyle - Public Works Building
Attendees:	Manuel de la Rosa - City of Kyle Leon Barba - City of Kyle Susan Fraser - LAN David Manuel - LAN Eddy Etheredge - LAN Rob Rae - Kimley-Horn Michael Weaver - Prime Strategies Kara Buffington - Gap Strategies

Conference Purpose: \quad Project Kickoff Meeting

Discussion:

The following summarizes our understanding of the subject matter covered in this conference. If this differs from your understanding, please notify us in writing within five days.

This meeting was held to review the project schedule and scope of work, discuss the initial stakeholder and public input activities, and discuss any general project-related concerns.

Susan Fraser and David Manuel led the discussion through the tasks and work elements, following the approved scope.

GENERAL NOTES

- Complete Streets recommendations will include how streets connect to Citywide trail system (administered by Parks Department)
- Need to ensure at end of project that CAMPO incorporates the TMP.
- CAMPO 2040 will be out before TMP is finished-need to communicate to CAMPO that an update (Kyle TMP) is coming.
- Leon Barba is also the City's CAMPO representative.
- Policy issues to discuss in plan narrative:
- Connections between TMP and development code, especially pertaining to right-of-way dedication requirements and process
- Potential for impact fees
- How TMP will be amended in the future

STAKEHOLDER / PUBLIC INVOLVEMENT

- Surveys will be conducted with SurveyMonkey. Previous surveys have been conducted by the City's Department of Economic Development, so we may reuse some previous questions to provide continuity.
- Public input at a "Special Event" will be determined later; may be at a festival or civic event, or at a major shopping center.

Lockwood, Andrews
\& Newnam, Inc.
A LEO A DALY COMPANY

PLANNING
ENGINEERING

PROGRAM MANAGEMENT

Est. 1935

AUSTIN, TX
CHICAGO, IL
COLLEGE STATION, TX CORPUS CHRISTI, TX
DALLAS, TX
FLINT, MI
FORT WORTH, TX
HOUSTON, TX HUNTINGTON BEACH, CA
LANSING, MI
LAS VEGAS, NV
LOS ANGELES, CA
MIAMI, FL
MILPITAS, CA
ORANGE, CA
PHOENIX, AZ
SACRAMENTO, CA
SAN ANTONIO, TX SAN MARCOS, TX TAMPA BAY, FL
WACO, TX
(continued)

ACTION ITEMS

City of Kyle:

1. Locate and convey to LAN the following materials:
a. Recent traffic counts
b. Currently proposed developments / subdivision plats
c. Contact information for $1^{\text {st }}$ Southwest (City's financial advisor)
2. Review and approve text of press release.
3. Confirm specifics of website hosting.
4. Confirm stakeholder list and designate primary and secondary stakeholders.

LAN:

1. Gather base map information and data from existing plans.
2. Set up mapping standards.

Gap Strategies:

1. Notify stakeholders of project kickoff and overall plans

Distribution	Prepared By
	Signature:
	Print Name: David Manuel

Lockwood, Andrews
\& Newnam, Inc.
A LEO A DALY COMPANY

Date: May $\mathbf{1 s t}^{\text {st }} 2015$

| Project No.: | 140-10956-000 | Routing | |
| :--- | :--- | :--- | :--- | :--- |
| Project: | Transportation Master Plan (TMP) | | |
| Client: | City of Kyle | | |
| Conference
 Date: | April 27 | | |

Conference Purpose: Project Meeting

Discussion:
The following summarizes our understanding of the subject matter covered in this conference. If this differs from your understanding, please notify us in writing within five days.

This meeting was held to review the project schedule, discuss upcoming activities, and discuss any general project-related concerns.

Susan Fraser and David Manuel led the discussion through the agenda.

GENERAL NOTES

- Kimley-Horn to coordinate work on CAMPO model with City, to ensure matching up known development.
- City is concerned about population projections; they expect to reach 50,000 people by 2020 (Report updated to show 2014 estimates of approximately 35,000 as a base in addition to 2010 Census figure of 28,000)
- Existing and future multi-use trails
- Need better graphics to show connectivity
- Does CAMPO have a Master Trails Plan that covers the Kyle area?
- Include trails in future funding possibilities
- Need to update plan progress at a City Council meeting/workshop in July.
- Should have a strategy discussion about how to preserve corridor rights-of-way-corridor preservation ordinance, other development code process? Involve Mike Weaver and Lori Bible (?) as part of the financing and implementation task

SPECIFIC NETWORK ISSUES

- How do FM 150, Yarrington, or other east/west corridors connect to SH 130?
- Cypress Road would continue to extend westward as a Blanco River crossing
- Crosswinds development has an alignment developed for a major thoroughfare (the "east loop"). They propose swales and ribbon curbs in lieu

2925 BRIARPARK DRIVE HOUSTON, TX 77042
TEL 713.266.6900
FAX 713.266.2089
www.lan-inc.com

Lockwood, Andrews
\& Newnam, Inc.
A LEO A DALY COMPANY

PLANNING
ENGINEERING

PROGRAM MANAGEMENT

Est. 1935
AUSTIN, TX
CHICAGO, IL CLEARWATER, FL COLLEGE STATION, TX
DALLAS, TX
FLINT, MI
FORT WORTH, TX
HOUSTON, TX
HUNTINGTON BEACH, CA
LAS VEGAS, NV
LOS ANGELES, CA
MIAMI, FL
MILPITAS, CA
PHOENIX, AZ
SACRAMENTO, CA
SAN ANTONIO, TX
SAN MARCOS, TX
WACO, TX

2925 BRIARPARK DRIVE
HOUSTON, TX 77042
TEL 713.266.6900
FAX 713.266.2089
www.lan-inc.com
(continued)
of curb-and-gutter.

- Make sure to include local street connections that can be made; one of the public meeting maps showed several.
- Include bike lanes (existing and proposed) as part of network development

UTILITY CAPACITY ISSUES

- Numerous areas' development creates concerns for water and wastewater capacity. Road pattern should recognize potential zoning / development restrictions.
- Anthem Development
- Land opened by FM 150 realignment west of city
- Any newly-accessible land west of the Blanco River

ROAD FEES

- City has previously charged roadway impact fee based on parcels' frontage on existing roads ("Perimeter Fee") and would like to change to an impact fee based on acreage and density.
- New Braunfels developed a similar program in 2006 with updates in 2014.
- Roadway CIP and Cost Calculation:
- Currently there is no roadway CIP.
- Plan is to take overall network plan and cost estimates from this project to develop an overall build-out cost (a roadway CIP)
- Roadway CIP total cost would be divided by allowed new density to determine a fee per unit (?)
- As the draft network will be completed in May, this draft cost element can be done in June.

ACTION ITEMS

City of Kyle:

1. Compile info on road bond progress for May meeting

LAN:

1. Find information on New Braunfels's road impact fees
2. Finalize draft corridor network

Prime Strategies:

1. Recent road bonds have a 20-year payoff. Include in report this and other bond payoff information from City's financial advisor.

Distribution	Prepared By
	Signature:
	Print Name: David Manuel

102 WONDER WORLD DRIVE SUITE 305
SAN MARCOS, TX 78666
TEL 512.396.4040
FAX 512.396.4064
www.lan-inc.com

Date: June $\mathbf{1 2}^{\text {th }} 2015$
Filing Data Code 1-03

HUNTINGTON BEACH, CA
LANSING, MI
LAS VEGAS, NV
LOS ANGELES, CA
MIAMI, FL
MILPITAS, CA
ORANGE, CA
PHOENIX, AZ
SACRAMENTO, CA
SAN ANTONIO, TX
SAN MARCOS, TX
TAMPA BAY, FL
WACO, TX
Discussion:
The following summarizes our understanding of the subject matter covered in this conference. If this differs from your understanding, please notify us in writing within five days.

This meeting was held to receive comments on the typical sections created and to discuss the agenda for the City Council briefing.

Susan Fraser led the discussion through the agenda.

TYPICAL SECTIONS

- The total number of typical sections (15) was discussed, but it was decided to leave it as is to allow flexibility during planning.
- It was noted roads in Kyle are constructed using asphalt and not concrete.
- Items like utilities and engineering costs are typically not listed in the total but it was agreed to leave it as is and remove items per project.
- The title "Engineering Costs" needs to be better defined. Depending on what this item entails the percent may go up to 20\%
- Cost estimates need to be as accurate as possible for typical sections up to collectors because they are utilized the most.
- L2U and R2U should have a 60' ROW to allow more space for utilities.

CITY COUNCIL BRIEFING

- It was agreed to allocate 35 minutes for LAN and the subs to present during the briefing and 10-15 minutes for Q\&A. Out of the 35 minutes, 15 will be used to discuss the financial implementation strategies.

Proposed Agenda:

- Schedule update
- Review of typical sections
- Review of draft network

PLANNING

ENGINEERING
PROGRAM MANAGEMENT

Est. 1935
AUSTIN, TX
CHICAGO, IL
CLEARWATER, FL
COLLEGE STATION, TX
DALLAS, TX
FLINT, MI
FORT WORTH, TX
HOUSTON, TX
HUNTINGTON BEACH, CA
LAS VEGAS, NV
LOS ANGELES, CA
MIAMI, FL
MILPITAS, CA
PHOENIX, AZ
SACRAMENTO, CA
SAN ANTONIO, TX
SAN MARCOS, TX
WACO, TX
(continued)

- Request for prioritization and ranking considerations
- Corridor preservation
- Missed connections
- Road Bond CIP Estimates
- Financial implementation strategies
- Other feedback/input

ACTION ITEMS

LAN:

1. Update typical sections
2. Update cost estimates
3. Email all updates to the City of Kyle by June $16^{\text {th }} \mathrm{COB}$

Distribution	Prepared By
	Signature:

(9) tifiwomathanctaws
\bar{A} LEO A DALY COMPANY

[^0]: *CAMPO's Projections

[^1]: C-15

[^2]:

[^3]:

